Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 26(1): 27-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510111

RESUMO

Huntington's disease (HD) is a fatal, dominantly inherited neurodegenerative disorder caused by CAG trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Since the reduction of pathogenic mutant HTT messenger RNA is therapeutic, we developed a mutant allele-sensitive CAGEX RNA-targeting CRISPR-Cas13d system (Cas13d-CAGEX) that eliminates toxic CAGEX RNA in fibroblasts derived from patients with HD and induced pluripotent stem cell-derived neurons. We show that intrastriatal delivery of Cas13d-CAGEX via an adeno-associated viral vector selectively reduces mutant HTT mRNA and protein levels in the striatum of heterozygous zQ175 mice, a model of HD. This also led to improved motor coordination, attenuated striatal atrophy and reduction of mutant HTT protein aggregates. These phenotypic improvements lasted for at least eight months without adverse effects and with minimal off-target transcriptomic effects. Taken together, we demonstrate proof of principle of an RNA-targeting CRISPR-Cas13d system as a therapeutic approach for HD, a strategy with implications for the treatment of other dominantly inherited disorders.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , RNA , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corpo Estriado/metabolismo , RNA Mensageiro/metabolismo , Fenótipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
2.
Toxicol Lett ; 338: 67-77, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290830

RESUMO

Chemical-peptide conjugation is the molecular initiating event in skin sensitization. The OECD test guideline uses a high-performance liquid chromatography/ultraviolet (HPLC/UV) detection method to quantify chemical-peptide conjugation in a direct peptide reactivity assay (DPRA), which measures the depletion of two synthetic peptides containing lysine or cysteine residues. To improve assay throughput, sensitivity and accuracy, an automated 384-well plate-based RapidFire solid-phase extraction (SPE) system coupled with tandem mass spectrometry (MS/MS) DPRA was developed and validated in the presence of a newly designed internal standard. Compared to the HPLC/UV-based DPRA, the automated SPE-MS/MS-based DPRA improved throughput from 16 min to 10 s per sample, and substrate peptides usage was reduced from 100 mM to 5 µM. When implementing the SPE-MS/MS-based DPRA into a high-throughput platform, we found 10 compounds that depleted lysine peptide and 24 compounds that depleted cysteine peptide (including 7 unreported chemicals from 55 compounds we tested) in a concentration-response manner. The adduct formation between cysteine and cinnamic aldehyde and ethylene glycol dimethacrylate were further analyzed using high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF-MS) to confirm the conjugation. Overall, the automated SPE-MS/MS-based platform is an efficient, economic, and accurate way to detect skin sensitizers.


Assuntos
Alérgenos/toxicidade , Cromatografia Líquida de Alta Pressão , Dermatite Alérgica de Contato/etiologia , Ensaios de Triagem em Larga Escala , Peptídeos/química , Pele/efeitos dos fármacos , Espectrometria de Massas em Tandem , Testes de Toxicidade , Alérgenos/química , Alternativas aos Testes com Animais , Cromatografia Líquida de Alta Pressão/normas , Cisteína , Ensaios de Triagem em Larga Escala/normas , Humanos , Lisina , Padrões de Referência , Reprodutibilidade dos Testes , Medição de Risco , Espectrometria de Massas em Tandem/normas
3.
SLAS Discov ; 25(5): 491-497, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32233736

RESUMO

Quality control monitoring of cell lines utilized in biomedical research is of utmost importance and is critical for the reproducibility of data. Two key pitfalls in tissue culture are 1) cell line authenticity and 2) Mycoplasma contamination. As a collaborative research institute, the National Center for Advancing Translational Sciences (NCATS) receives cell lines from a range of commercial and academic sources, which are adapted for high-throughput screening. Here, we describe the implementation of routine NCATS-wide Mycoplasma testing and short tandem repeat (STR) testing for cell lines. Initial testing identified a >10% Mycoplasma contamination rate. While the implementation of systematic testing has not fully suppressed Mycoplasma contamination rates, clearly defined protocols that include the immediate destruction of contaminated cell lines wherever possible has enabled rapid intervention and removal of compromised cell lines. Data for >2000 cell line samples tested over 3 years, and case studies are provided. STR testing of 186 cell lines with established STR profiles revealed only five misidentified cell lines, all of which were received from external labs. The data collected over the 3 years since implementation of this systematic testing demonstrate the importance of continual vigilance for rapid identification of "problem" cell lines, for ensuring reproducible data in translational science research.


Assuntos
Técnicas de Cultura de Células/métodos , Mycoplasma/isolamento & purificação , Controle de Qualidade , Pesquisa Translacional Biomédica/normas , Linhagem Celular Tumoral , Humanos , Repetições de Microssatélites/genética , Mycoplasma/patogenicidade , National Center for Advancing Translational Sciences (U.S.) , Reação em Cadeia da Polimerase , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologia
4.
Front Aging Neurosci ; 10: 118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922148

RESUMO

Amyloid-ß (Aß) is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD), and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes) are addressed first.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA