Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 18622, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819079

RESUMO

The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Survivina/metabolismo , Treonina/química , Animais , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Insetos , Mitose , Mutação , Fosforilação , Ratos , Fuso Acromático/metabolismo
2.
Cancer Sci ; 109(9): 2632-2640, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29949679

RESUMO

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy-prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence-associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy-induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy-induced CIN to control these pathological conditions.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Instabilidade Cromossômica/genética , Neoplasias/genética , Tetraploidia , Animais , Humanos , Camundongos
3.
Cell Mol Life Sci ; 74(5): 881-890, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27669693

RESUMO

The primary cilium is a non-motile and microtubule-enriched protrusion ensheathed by plasma membrane. Primary cilia function as mechano/chemosensors and signaling hubs and their disorders predispose to a wide spectrum of human diseases. Most types of cells assemble their primary cilia in response to cellular quiescence, whereas they start to retract the primary cilia upon cell-cycle reentry. The retardation of ciliary resorption process has been shown to delay cell-cycle progression to the S or M phase after cell-cycle reentry. Apart from this conventional concept of ciliary disassembly linked to cell-cycle reentry, recent studies have led to a novel concept, suggesting that cells can suppress primary cilia assembly during cell proliferation. Accumulating evidence has also demonstrated the importance of Aurora-A (a protein originally identified as one of mitotic kinases) not only in ciliary resorption after cell-cycle reentry but also in the suppression of ciliogenesis in proliferating cells, whereas Aurora-A activators are clearly distinct in both phenomena. Here, we summarize the current knowledge of how cycling cells suppress ciliogenesis and compare it with mechanisms underlying ciliary resorption after cell-cycle reentry. We also discuss a reciprocal relationship between primary cilia and cell proliferation.


Assuntos
Divisão Celular , Cílios/metabolismo , Organogênese , Animais , Ciclo Celular , Proliferação de Células , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
4.
Biochem Biophys Res Commun ; 478(3): 1323-9, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27565725

RESUMO

Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.


Assuntos
Proteína Quinase CDC2/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Mitose , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Fosforilação , Fosfosserina/metabolismo , Rabdomiossarcoma/patologia
5.
J Cell Biol ; 212(4): 409-23, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880200

RESUMO

Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein-Aurora A pathway to inhibit primary cilia assembly.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Epiteliais/enzimologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Aurora Quinase A/genética , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular , Centríolos/enzimologia , Cílios/enzimologia , Genótipo , Células HeLa , Humanos , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Camundongos , Camundongos Knockout , Microtúbulos/enzimologia , Fenótipo , Estabilidade Proteica , Proteólise , Interferência de RNA , Células Swiss 3T3 , Fatores de Tempo , Transfecção
6.
Methods Enzymol ; 568: 85-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26795468

RESUMO

Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Accumulating data have suggested that IF protein phosphorylation dramatically changes IF structure/dynamics in cells. For the production of an antibody recognizing site-specific protein phosphorylation (a site- and phosphorylation state-specific antibody), we first employed a strategy to immunize animals with an in vitro-phosphorylated polypeptide or a phosphopeptide (corresponding to a phosphorylated residue and its surrounding sequence of amino acids), instead of a phosphorylated protein. Our established methodology not only improves the chance of obtaining a phospho-specific antibody but also has the advantage that one can predesign a targeted phosphorylation site. It is now applied to the production of an antibody recognizing other types of site-specific posttranslational modification, such as acetylation or methylation. The use of such an antibody in immunocytochemistry enables us to analyze spatiotemporal distribution of site-specific IF protein phosphorylation. The antibody is of great use to identify a protein kinase responsible for in vivo IF protein phosphorylation and to monitor intracellular kinase activities through IF protein phosphorylation. Here, we present an overview of our methodology and describe stepwise approaches for the antibody characterization. We also provide some examples of analyses for IF protein phosphorylation involved in mitosis and signal transduction.


Assuntos
Anticorpos/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Sondas Moleculares/metabolismo , Fosforilação , Vimentina/metabolismo
7.
J Biol Chem ; 290(21): 12984-98, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847236

RESUMO

Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.


Assuntos
Aneuploidia , Citocinese , Envelhecimento da Pele/patologia , Gordura Subcutânea/patologia , Tetraploidia , Vimentina/fisiologia , Animais , Western Blotting , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Fosforilação , Gordura Subcutânea/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cicatrização
8.
J Cell Sci ; 128(11): 2057-69, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908861

RESUMO

The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.


Assuntos
Movimento Celular/fisiologia , Esfingolipídeos/metabolismo , Vimentina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Fosforilação/fisiologia , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Quinases Associadas a rho/metabolismo
9.
Cell Struct Funct ; 40(1): 43-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748360

RESUMO

Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.


Assuntos
Proteínas Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , Proteínas Quinases/química , Serina/metabolismo
10.
Cilia ; 4: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26719793

RESUMO

Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin-proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCF(Fbw7) in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.

11.
Cell Cycle ; 13(20): 3302-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485510

RESUMO

Whereas many components regulating the progression from S phase through G2 phase into mitosis have been identified, the mechanism by which these components control this critical cell cycle progression is still not fully elucidated. Cyclin A/Cdk2 has been shown to regulate the timing of Cyclin B/Cdk1 activation and progression into mitosis although the mechanism by which this occurs is only poorly understood. Here we show that depletion of Cyclin A or inhibition of Cdk2 during late S/early G2 phase maintains the G2 phase arrest by reducing Cdh1 transcript and protein levels, thereby stabilizing Claspin and maintaining elevated levels of activated Chk1 which contributes to the G2 phase observed. Interestingly, the Cyclin A/Cdk2 regulated APC/C(Cdh1) activity is selective for only a subset of Cdh1 targets including Claspin. Thus, a normal role for Cyclin A/Cdk2 during early G2 phase is to increase the level of Cdh1 which destabilises Claspin which in turn down regulates Chk1 activation to allow progression into mitosis. This mechanism links S phase exit with G2 phase transit into mitosis, provides a novel insight into the roles of Cyclin A/Cdk2 in G2 phase progression, and identifies a novel role for APC/C(Cdh1) in late S/G2 phase cell cycle progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caderinas/metabolismo , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Fase G2/fisiologia , Fase S/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD , Caderinas/genética , Ciclina A/genética , Quinase 2 Dependente de Ciclina/genética , Fase G2/genética , Humanos , Fase S/genética
12.
Cell Struct Funct ; 39(1): 45-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24451569

RESUMO

The microtubule (MT) cytoskeleton is essential for cellular morphogenesis, cell migration, and cell division. MT organization is primarily mediated by a variety of MT-associated proteins. Among these proteins, plus-end-tracking proteins (+TIPs) are evolutionarily conserved factors that selectively accumulate at growing MT plus ends. Cytoplasmic linker protein (CLIP)-170 is a +TIP that associates with diverse proteins to determine the behavior of MT ends and their linkage to intracellular structures, including mitotic chromosomes. However, how CLIP-170 activity is spatially and temporally controlled is largely unknown. Here, we show that phosphorylation at Ser312 in the third serine-rich region of CLIP-170 is increased during mitosis. Polo-like kinase 1 (Plk1) is responsible for this phosphorylation during the mitotic phase of dividing cells. In vitro analysis using a purified CLIP-170 N-terminal fragment showed that phosphorylation by Plk1 diminishes CLIP-170 binding to the MT ends and lattice without affecting binding to EB3. Furthermore, we demonstrate that during mitosis, stable kinetochore/MT attachment and subsequent chromosome alignment require CLIP-170 and a proper phosphorylation/dephosphorylation cycle at Ser312. We propose that CLIP-170 phosphorylation by Plk1 regulates proper chromosome alignment by modulating the interaction between CLIP-170 and MTs in mitotic cells and that CLIP-170 activity is stringently controlled by its phosphorylation state, which depends on the cellular context.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/química , Mitose , Proteínas de Neoplasias/química , Fosforilação , Polimerização , Ligação Proteica , Serina/metabolismo , Quinase 1 Polo-Like
13.
Cell Cycle ; 13(1): 126-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24196446

RESUMO

Endocytic vesicle fusion is inhibited during mitosis, but the molecular pathways that mediate the inhibition remain unclear. Here we uncovered an essential role of Polo-like kinase 1 (Plk1) in this mechanism. Phosphoproteomic analysis revealed that Plk1 phosphorylates the intermediate filament protein vimentin on Ser459, which is dispensable for its filament formation but is necessary for the inhibition of endocytic vesicle fusion in mitosis. Furthermore, this mechanism is required for integrin trafficking toward the cleavage furrow during cytokinesis. Our results thus identify a novel mechanism for fusion inhibition in mitosis and implicate its role in vesicle trafficking after anaphase onset.


Assuntos
Proteínas de Ciclo Celular/genética , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Vesículas Transportadoras/genética , Vimentina/metabolismo , Anáfase/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese , Células HeLa , Humanos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Vesículas Transportadoras/metabolismo , Quinase 1 Polo-Like
14.
J Biol Chem ; 288(50): 35626-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24142690

RESUMO

Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.


Assuntos
Aneuploidia , Catarata/etiologia , Catarata/metabolismo , Senescência Celular , Endoftalmite/etiologia , Endoftalmite/metabolismo , Células Epiteliais/patologia , Mitose , Vimentina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Catarata/genética , Catarata/patologia , Núcleo Celular/patologia , Endoftalmite/genética , Endoftalmite/patologia , Células Epiteliais/metabolismo , Técnicas de Introdução de Genes , Cristalino/patologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Vimentina/química , Vimentina/genética
15.
Nat Commun ; 4: 1882, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23695676

RESUMO

Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1-Thr210 phosphorylation. Plk1-Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1-Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1-Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1-Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1-Ser99 phosphorylation downstream of the PI3K-Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase.


Assuntos
Proteínas 14-3-3/metabolismo , Anáfase , Proteínas de Ciclo Celular/metabolismo , Metáfase , Fosfatidilinositol 3-Quinases/metabolismo , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Biocatálise , Caenorhabditis elegans , Drosophila melanogaster , Ativação Enzimática , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Quinase 1 Polo-Like
17.
Cancer Sci ; 103(7): 1195-200, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22435685

RESUMO

DNA-damaging strategies, such as radiotherapy and the majority of chemotherapeutic therapies, are the most frequently used non-surgical anti-cancer therapies for human cancers. These therapies activate DNA damage/replication checkpoints, which induce cell-cycle arrest to provide the time needed to repair DNA damage. Due to genetic defect(s) in the ATM (ataxia-telangiectasia mutated)-Chk2-p53 pathway, an ATR (ATM- and Rad3-related)-Chk1-Cdc25 route is the sole checkpoint pathway in a majority of cancer cells. Chk1 inhibitors are expected to selectively induce the mitotic cell death (mitotic catastrophe) of cancer cells. However, recent new findings have pointed out that Chk1 is essential for the maintenance of genome integrity even during unperturbed cell-cycle progression, which is controlled by a variety of protein kinases. These observations have raised concerns about a possible risk of Chk1 inhibitors on the clinics. In this review, we summarize recent advances in Chk1 regulation by phosphorylation, and discuss Chk1 as a molecular target for cancer therapeutics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatases cdc25/metabolismo , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Mol Biol Cell ; 23(8): 1582-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22357623

RESUMO

The ataxia telangiectasia mutated- and rad3-related kinase (ATR)/Chk1 pathway is a sentinel of cell cycle progression. On the other hand, the Ras/mitogen-activated protein kinase/90-kDa ribosomal S6 kinase (p90 RSK) pathway is a central node in cell signaling downstream of growth factors. These pathways are closely correlated in cell proliferation, but their interaction is largely unknown. Here we show that Chk1 is phosphorylated predominantly at Ser-280 and translocated from cytoplasm to nucleus in response to serum stimulation. Nonphosphorylated Chk1-Ser-280 mutation attenuates nuclear Chk1 accumulation, whereas the phosphomimic mutation has a reverse effect on the localization. Treatment with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and accumulation at the nucleus after serum stimulation, whereas these two phenomena are induced by the expression of the constitutively active mutant of p90 RSK in serum-starved cells. In vitro analyses indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk1. Together with Chk1 phosphorylation at Ser-345 by ATR and its autophosphorylation at Ser-296, which are critical for checkpoint signaling, Chk1-Ser-280 phosphorylation is elevated in a p90 RSK-dependent manner after UV irradiation. In addition, Chk1 phosphorylation at Ser-345 and Ser-296 after UV irradiation is also attenuated by the treatment with p90 RSK inhibitor or by Ser-280 mutation to Ala. These results suggest that p90 RSK facilitates nuclear Chk1 accumulation through Chk1-Ser-280 phosphorylation and that this pathway plays an important role in the preparation for monitoring genetic stability during cell proliferation.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células , Instabilidade Genômica , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Citoplasma/metabolismo , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
19.
J Cell Sci ; 124(Pt 13): 2113-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628425

RESUMO

Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry.


Assuntos
Núcleo Celular/metabolismo , Mitose , Proteínas Quinases/biossíntese , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Centrossomo/metabolismo , Quinase 1 do Ponto de Checagem , Ciclina B1/genética , Ciclina B1/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno
20.
PLoS One ; 5(1): e8821, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20098673

RESUMO

During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.


Assuntos
Dano ao DNA , Replicação do DNA , Mitose , Poliploidia , Animais , Divisão Celular , Transformação Celular Neoplásica , Células Cultivadas , Camundongos , Oncogenes , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA