Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Pharmacol Res ; 195: 106885, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37634554

RESUMO

Electronic nicotine delivery systems (ENDS), which are becoming increasingly popular in many parts of the world, have recently become more sophisticated in terms of their more active content and better controlled vaporisation. This review begins by describing how cigarette smoking led to the development of ENDS as a means of combatting nicotine addiction. ENDS are usually categorised as belonging to one of only three main generations, but a fourth has been added in order to differentiate the latest, most powerful, most advanced and innovative that have improved heating efficiency. Descriptions of the principal substances contained in ENDS are followed by considerations concerning the risk of toxicity due to the presence of albeit low concentrations of such a variety of compounds inhaled over a long time, and the increasingly widespread use of ENDS as a means of smoking illicit drugs. We also review the most widely used pharmacotherapeutic approaches to smoking cessation, and recent epidemiological data showing that ENDS can help some people to stop smoking. However, in order to ensure their appropriate regulation, there is a need for higher-quality evidence concerning the health effects and safety of ENDS, and their effectiveness in discouraging tobacco smoking.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos
2.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770914

RESUMO

α3ß4 nicotinic acetylcholine receptors (nARs) are pentameric ligand-gated cation channels that function in peripheral tissue and in the peripheral and central nervous systems, where they are critical mediators of ganglionic synaptic transmission and modulators of reward-related behaviours. In the pentamer, two α3ß4 subunit couples provide ligand-binding sites, and the fifth single (accessory) subunit (α3 or ß4) regulates receptor trafficking from the endoplasmic reticulum to the cell surface. A number of rare missense variants of the human ß4 subunit have recently been linked to nicotine dependence and/or sporadic amyotrophic lateral sclerosis, and altered responses to nicotine have been reported for these variants; however, it is unknown whether the effects of mutations depend on the subunit within the ligand-binding couples and/or on the fifth subunit. Here, by expressing single populations of pentameric receptors with fixed stoichiometry in cultured cells, we investigated the effect of ß4 variants in the fifth position on the assembly and surface exposure of α3ß4 nAChRs. The results demonstrate that the missense mutations in the accessory subunit alone, despite not affecting the assembly of α3ß4 receptors, alter their trafficking and surface localisation. Thus, altered trafficking of an otherwise functional nAChR may underlie the pathogenic effects of these mutations.


Assuntos
Mutação de Sentido Incorreto , Receptores Nicotínicos , Humanos , Ligantes , Receptores Nicotínicos/metabolismo , Nicotina/metabolismo , Membrana Celular/metabolismo
3.
J Med Chem ; 66(1): 306-332, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526469

RESUMO

Modifications of the cationic head and the ethylene linker of 2-(triethylammonium)ethyl ether of 4-stilbenol (MG624) have been proved to produce selective α9*-nAChR antagonism devoid of any effect on the α7-subtype. Here, single structural changes at the styryl portion of MG624 lead to prevailing α7-nAChR antagonism without abolishing α9*-nAChR antagonism. Nevertheless, rigidification of the styryl into an aromatic bicycle, better if including a H-bond donor NH, such as 5-indolyl (31), resulted in higher and more selective α7-nAChR affinity. Hybridization of this modification with the constraint of the 2-triethylammoniumethyloxy portion into (R)-N,N-dimethyl-3-pyrrolidiniumoxy substructure, previously reported as the best modification for the α7-nAChR affinity of MG624 (2), was a winning strategy. The resulting hybrid 33 had a subnanomolar α7-nAChR affinity and was a potent and selective α7-nAChR antagonist, producing at the α7-, but not at the α9*-nAChR, a profound loss of subsequent ACh function.


Assuntos
Receptores Nicotínicos , Éter , Receptor Nicotínico de Acetilcolina alfa7 , Etil-Éteres , Éteres
4.
J Med Chem ; 65(14): 10079-10097, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35834819

RESUMO

Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small molecules selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium ethyl ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR. Among these, the compound with cyclohexyldimethylammonium head (7) stands out for having no α7-nAChR agonist or antagonist effect along with very low affinity at both α7- and α3ß4-nAChRs. At supra-micromolar concentrations, 7 and the other selective α9* antagonists behaved as partial agonists at α9*-nAChRs with a very brief response, followed by rebound current once the application is stopped and the channel is disengaged. The small or null postapplication activity of ACh seems to be related to the slow recovery of the rebound current.


Assuntos
Compostos de Amônio , Receptores Nicotínicos , Compostos de Amônio/farmacologia , Éter , Humanos , Antagonistas Nicotínicos/farmacologia , Compostos de Amônio Quaternário , Estilbenos
5.
Pharmacol Res ; 175: 105959, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756924

RESUMO

Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.


Assuntos
Compostos de Amônio/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
6.
Pharmacol Res ; 170: 105700, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087351

RESUMO

Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.


Assuntos
Alcaloides/farmacologia , Sistema Nervoso/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Agentes de Cessação do Hábito de Fumar/farmacologia , Abandono do Hábito de Fumar , Alcaloides/farmacocinética , Alcaloides/toxicidade , Animais , Azocinas/farmacocinética , Azocinas/farmacologia , Azocinas/toxicidade , Humanos , Estrutura Molecular , Sistema Nervoso/metabolismo , Quinolizinas/farmacocinética , Quinolizinas/farmacologia , Quinolizinas/toxicidade , Receptores Nicotínicos/metabolismo , Agentes de Cessação do Hábito de Fumar/farmacocinética , Agentes de Cessação do Hábito de Fumar/toxicidade , Relação Estrutura-Atividade
7.
Artigo em Inglês | MEDLINE | ID: mdl-33905756

RESUMO

BACKGROUND: Nicotine withdrawal syndrome is a major clinical problem. Animal models with sufficient predictive validity to support translation of pre-clinical findings to clinical research are lacking. AIMS: We evaluated the behavioural and neurochemical alterations in zebrafish induced by short- and long-term nicotine withdrawal. METHODS: Zebrafish were exposed to 1 mg/L nicotine for 2 weeks. Dependence was determined using behavioural analysis following mecamylamine-induced withdrawal, and brain nicotinic receptor binding studies. Separate groups of nicotine-exposed and control fish were assessed for anxiety-like behaviours, anhedonia and memory deficits following 2-60 days spontaneous withdrawal. Gene expression analysis using whole brain samples from nicotine-treated and control fish was performed at 7 and 60 days after the last drug exposure. Tyrosine hydroxylase (TH) immunoreactivity in pretectum was also analysed. RESULTS: Mecamylamine-precipitated withdrawal nicotine-exposed fish showed increased anxiety-like behaviour as evidenced by increased freezing and decreased exploration. 3H-Epibatidine labeled heteromeric nicotinic acethylcholine receptors (nAChR) significantly increased after 2 weeks of nicotine exposure while 125I-αBungarotoxin labeled homomeric nAChR remained unchanged. Spontaneous nicotine withdrawal elicited anxiety-like behaviour (increased bottom dwelling), reduced motivation in terms of no preference for the enriched side in a place preference test starting from Day 7 after withdrawal and a progressive decrease of memory attention (lowering discrimination index). Behavioural differences were associated with brain gene expression changes: nicotine withdrawn animals showed decreased expression of chrna 4 and chrna7 after 60 days, and of htr2a from 7 to 60 days.The expression of c-Fos was significantly increased at 7 days. Finally, Tyrosine hydroxylase (TH) immunoreactivity increased in dorsal parvocellular pretectal nucleus, but not in periventricular nucleus of posterior tuberculum nor in optic tectum, at 60 days after withdrawal. CONCLUSIONS: Our findings show that nicotine withdrawal induced anxiety-like behaviour, cognitive alterations, gene expression changes and increase in pretectal TH expression, similar to those observed in humans and rodent models.


Assuntos
Emoções/fisiologia , Mamíferos , Síndrome de Abstinência a Substâncias , Tabagismo , Peixe-Zebra , Anedonia/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Feminino , Expressão Gênica , Masculino , Receptores Nicotínicos , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/análise
8.
Br J Pharmacol ; 178(7): 1651-1668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506493

RESUMO

BACKGROUND AND PURPOSE: The α7 and α4ß2* ("*" denotes possibly assembly with another subunit) nicotinic acetylcholine receptors (nAChRs) are the most abundant nAChRs in the mammalian brain. These receptors are the most targeted nAChRs in drug discovery programmes for brain disorders. However, the development of subtype-specific agonists remains challenging due to the high degree of sequence homology and conservation of function in nAChRs. We have developed C(10) variants of cytisine, a partial agonist of α4ß2 nAChR that has been used for smoking cessation. The C(10) methyl analogue used in this study displays negligible affinity for α7 nAChR, while retaining high affinity for α4ß2 nAChR. EXPERIMENTAL APPROACH: The structural underpinning of the selectivity of 10-methylcytisine for α7 and α4ß2 nAChRs was investigated using molecular dynamic simulations, mutagenesis and whole-cell and single-channel current recordings. KEY RESULTS: We identified a conserved arginine in the ß3 strand that exhibits a non-conserved function in nAChRs. In α4ß2 nAChR, the arginine forms a salt bridge with an aspartate residue in loop B that is necessary for receptor expression, whereas in α7 nAChR, this residue is not stabilised by electrostatic interactions, making its side chain highly mobile. This lack of constrain produces steric clashes with agonists and affects the dynamics of residues involved in agonist binding and the coupling network. CONCLUSION AND IMPLICATIONS: We conclude that the high mobility of the ß3-strand arginine in the α7 nAChR influences agonist binding and possibly gating network and desensitisation. The findings have implications for rational design of subtype-selective nAChR agents.


Assuntos
Agonistas Nicotínicos , Receptores Nicotínicos , Animais , Arginina , Encéfalo/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435320

RESUMO

Nicotine addiction is a severe public health problem. The aim of this study was to investigate the alterations in key neurotransmissions after 60 days of withdrawal from seven weeks of intermittent cigarette smoke, e-cigarette vapours, or an e-cigarette vehicle. In the nicotine withdrawal groups, increased depressive and anxiety/obsessive-compulsive-like behaviours were demonstrated in the tail suspension, sucrose preference and marble burying tests. Cognitive impairments were detected in the spatial object recognition test. A significant increase in Corticotropin-releasing factor (Crf) and Crf1 mRNA levels was observed, specifically after cigarette withdrawal in the caudate-putamen nucleus (CPu). The nociceptin precursor levels were reduced by cigarette (80%) and e-cigarette (50%) withdrawal in the CPu. The delta opioid receptor showed a significant reduction in the hippocampus driven by the exposure to an e-cigarette solubilisation vehicle, while the mRNA levels doubled in the CPu of mice that had been exposed to e-cigarettes. Withdrawal after exposure to e-cigarette vapour induced a 35% Bdnf mRNA decrease in the hippocampus, whereas Bdnf was augmented by 118% by cigarette withdrawal in the CPu. This study shows that long-term withdrawal-induced affective and cognitive symptoms associated to lasting molecular alterations in peptidergic signalling may determine the impaired neuroplasticity in the hippocampal and striatal circuitry.


Assuntos
Vapor do Cigarro Eletrônico/efeitos adversos , Hipocampo/efeitos dos fármacos , RNA Mensageiro/genética , Síndrome de Abstinência a Substâncias/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Núcleo Caudado/fisiopatologia , Hormônio Liberador da Corticotropina/genética , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Opioides/genética , Orexinas/genética , Putamen/efeitos dos fármacos , Putamen/metabolismo , Putamen/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores Opioides/genética , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Regulação para Cima/efeitos dos fármacos
10.
Front Cell Neurosci ; 15: 805123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126059

RESUMO

Neuronal nicotinic acetylcholine receptors containing the α9 or the α9 and α10 subunits are expressed in various extra-neuronal tissues. Moreover, most cancer cells and tissues highly express α9-containing receptors, and a number of studies have shown that they are powerful regulators of responses that stimulate cancer processes such as proliferation, inhibition of apoptosis, and metastasis. It has also emerged that their modulation is a promising target for drug development. The aim of this review is to summarize recent data showing the involvement of these receptors in controlling the downstream signaling cascades involved in the promotion of cancer.

11.
Pharmacol Res ; 163: 105336, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276105

RESUMO

Glioblastomas (GBMs), the most frequent and aggressive human primary brain tumours, have altered cell metabolism, and one of the strongest indicators of malignancy is an increase in choline compounds. Choline is also a selective agonist of some neuronal nicotinic acetylcholine receptor (nAChR) subtypes. As little is known concerning the expression of nAChR in glioblastoma cells, we analysed in U87MG human grade-IV astrocytoma cell line and GBM5 temozolomide-resistant glioblastoma cells selected from a cancer stem cell-enriched culture, molecularly, pharmacologically and functionally which nAChR subtypes are expressed and,whether choline and nicotine can affect GBM cell proliferation. We found that U87MG and GBM5 cells express similar nAChR subtypes, and choline and nicotine increase their proliferation rate and activate the anti-apoptotic AKT and pro-proliferative ERK pathways. These effects are blocked by the presence of non-cell-permeable peptide antagonists selective for α7- and α9-containing nicotinic receptors. siRNA-mediated silencing of α7 or α9 subunit expression also selectively prevents the effects of nicotine and choline on GBM cell proliferation. Our findings indicate that nicotine and choline activate the signalling pathways involved in the proliferation of GBM cells, and that these effects are mediated by α7 and α9-containing nAChRs. This suggests that these nicotinic receptors may contribute to the aggressive behaviour of this tumor and may indicate new therapeutic strategies against high-grade human brain tumours.


Assuntos
Neoplasias Encefálicas/metabolismo , Colina/farmacologia , Glioblastoma/metabolismo , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
12.
Psychopharmacology (Berl) ; 237(8): 2317-2326, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32382782

RESUMO

RATIONALE: Prolinol aryl ethers and their rigidified analogues pyrrolidinyl benzodioxanes have a high affinity for mammalian α4ß2 nicotinic acetylcholine receptors (nAChRs). Electrophysiological studies have shown that the former are full agonists and the latter partial agonists or antagonists of human α4ß2 receptors, but their in vivo effects are unknown. OBJECTIVES AND METHODS: As α4ß2 nAChRs play an important role in the cognition and the rewarding effects of nicotine, we tested the effects of two full agonists and one antagonist on spatial learning, memory and attention in zebrafish using a T-maze task and virtual object recognition test (VORT). The effect of a partial agonist in reducing nicotine-induced conditioned place preference (CPP) was also investigated. RESULTS: In comparison with the vehicle alone, the full agonists MCL-11 and MCL-28 induced a significant cognitive enhancement as measured by the reduced running time in the T-maze and increased attention as measured by the increased discrimination index in the VORT. MCL-11 was 882 times more potent than nicotine. The two compounds were characterised by an inverted U-shaped dose-response curve, and their effects were blocked by the co-administration of the antagonist MCL-117, which alone had no effect. The partial agonist MCL-54 induced CPP and had an inverted U-shaped dose-response curve similar to that of nicotine but blocked the reinforcing effect of co-administered nicotine. Binding studies showed that all of the compounds have a higher affinity for heteromeric [3H]-epibatidine receptors than [125I]-αBungarotoxin receptors. MCL-11 was the most selective of heteromeric receptors. CONCLUSIONS: These behavioural studies indicate that full agonist prolinol aryl ethers are very active in increasing spatial learning, memory and attention in zebrafish. The benzodioxane partial agonist MCL-54 reduced nicotine-induced CPP, and the benzodioxane antagonist MCL-117 blocked all agonist-induced activities.


Assuntos
Aprendizagem em Labirinto/efeitos dos fármacos , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Pirrolidinas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Relação Dose-Resposta a Droga , Éteres/metabolismo , Éteres/farmacologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Morfinanos/metabolismo , Morfinanos/farmacologia , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Pirrolidinas/farmacologia , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Peixe-Zebra
13.
Pharmacol Res ; 158: 104941, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32450347

RESUMO

Smoking cessation induces a withdrawal syndrome associated with anxiety, depression, and impaired neurocognitive functions, but much less is known about the withdrawal of e-cigarettes (e-CIG). We investigated in Balb/c mice the behavioural and neurochemical effects of withdrawal for up to 90 days after seven weeks' intermittent exposure to e-CIG vapour or cigarette smoke (CIG). The withdrawal of e-CIG and CIG induced early behavioural alterations such as spatial memory deficits (spatial object recognition task), increased anxiety (elevated plus maze test) and compulsive-like behaviour (marble burying test) that persisted for 60-90 days. Notably, attention-related (virtual object recognition task) and depression-like behaviours (tail suspension and sucrose preference tests) appeared only 15-30 days after withdrawal and persisted for as long as up to 90 days. At hippocampal level, the withdrawal-induced changes in the levels of AMPA receptor GluA1 and GluA2/3 subunits, PSD 95 protein, corticotropin-releasing factor (Crf) and Crf receptor 1 (CrfR1) mRNA were biphasic: AMPA receptor subunit and PSD95 protein levels initially remained unchanged and decreased after 60-90 days, whereas Crf/CrfR1 mRNA levels initially increased and then markedly decreased after 60 days. These late reductions correlated with the behavioural impairments, particularly the appearance of depression-like behaviours. Our findings show that major behavioural and neurochemical alterations persist or even first appear late after the withdrawal of chronic CIG smoke or e-CIG vapour exposure, and underline importance of conducting similar studies of humans, including e-CIG vapers.


Assuntos
Afeto/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Cognição/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Síndrome de Abstinência a Substâncias/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Afeto/fisiologia , Animais , Fumar Cigarros/metabolismo , Cognição/fisiologia , Vapor do Cigarro Eletrônico/administração & dosagem , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Exposição por Inalação/efeitos adversos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Síndrome de Abstinência a Substâncias/psicologia
14.
Eur J Med Chem ; 180: 51-61, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31299587

RESUMO

We designed the synthesis of a small library of 3-substituted-3,6-diazabicyclo[3.1.1]heptanes whose affinity on neuronal nicotinic receptors (nAChRs) was evaluated. Among the synthesized compounds, the 5-(3,6-diazabicyclo[3.1.1]heptane-3-yl)-N-(2-fluorophenyl)nicotinamide 43 proved to be the most interesting compound with α4ß2Ki value of 10 pM and a very high α7/α4ß2 selectivity. Furthermore, compounds 35, 39 and 43 elicited a selective partial agonist activity for α4ß2 nAChR subtype. Finally, in this paper we also report the conclusions on the 3,6-diazabicyclo[3.1.1]heptanes as ligands for nAChRs, resulting from our consolidated structure activity relationship (SAR) studies on this template.


Assuntos
Compostos Azabicíclicos/farmacologia , Neurônios/efeitos dos fármacos , Niacinamida/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/metabolismo , Niacinamida/síntese química , Niacinamida/química , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/química , Relação Estrutura-Atividade
15.
Eur Neuropsychopharmacol ; 29(4): 566-576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773388

RESUMO

Cigarette (CIG) smoking often precedes the use of illegal drugs. Electronic-cigarettes (e-CIGs) have been promoted as a means of stopping smoking and reducing the harmful effects of CIGs on the population. However, although e-CIGs eliminate some of the morbidity associated with combustible tobacco, they are still nicotine-delivery devices. In order to study whether the nicotine delivered via e-CIG acts as "a gateway drug" to the use of cannabis, we analysed the behavioural and molecular effects of 7 weeks' pre-exposure to air (AIR), e-CIGs or CIGs on addiction-related conditioned place preference (CPP) in mice using a sub-threshold (0.01 mg/kg) dose of delta-9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of cannabis. After 8 and 66 days of withdrawal, this Δ9-THC dose was ineffective in inducing CPP in mice pre-exposed to pump-driven AIR, but very effective in mice pre-exposed to e-CIGs or CIGs. Exposure to e-CIGs or CIGs increases the expression of ΔFosB in the nucleus accumbens (NAc), which remains high during short-term e-CIG or CIG withdrawal and long-term CIG withdrawal and is not influenced by treatment with Δ9-THC. At the end of e-CIG or CIG exposure and during withdrawal, the mice also had a higher AMPA receptors GluA1/GluA2-3 ratio in the NAc. Chronic nicotine exposure increases sensitivity to rewarding effects of Δ9-THC in mice and produces long-lasting neurobiological changes regardless of the delivery method (CIG vs. e-CIG). The exposure to passive tobacco smoke or e-CIG vapours can similarly increase vulnerability to the effects of cannabis and possibly other drugs of abuse.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Dronabinol/farmacologia , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco/efeitos adversos , Animais , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ensaio Radioligante , Receptores de AMPA/metabolismo , Radioisótopos de Enxofre/metabolismo , Dispositivos para o Abandono do Uso de Tabaco/efeitos adversos , Trítio/metabolismo
16.
Gut ; 68(8): 1406-1416, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30472681

RESUMO

OBJECTIVES: Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN: Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS: EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION: Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER: NCT02425774.


Assuntos
Benzofuranos , Íleus , Intestino Delgado , Músculo Liso , Pancreaticoduodenectomia/efeitos adversos , Complicações Pós-Operatórias , Adulto , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacologia , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Íleus/etiologia , Íleus/imunologia , Íleus/fisiopatologia , Íleus/prevenção & controle , Inflamação/imunologia , Inflamação/prevenção & controle , Intestino Delgado/imunologia , Intestino Delgado/inervação , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Pancreaticoduodenectomia/métodos , Projetos Piloto , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30396995

RESUMO

Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte-secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post-synaptically silent, suggesting that completion of early synaptogenesis may require a two-step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally-active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor-induced protein 6 (TSG6), remodeling of the perineuronal network, and a ß1-integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N-terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.


Assuntos
Proteína C-Reativa/fisiologia , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteína C-Reativa/genética , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Matriz Extracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Transporte Proteico/genética , Trombospondina 1/metabolismo
18.
J Med Chem ; 61(23): 10531-10544, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30403486

RESUMO

Adenocarcinoma and glioblastoma cell lines express α7- and α9α10-containing nicotinic acetylcholine receptors (nAChRs), whose activation promotes tumor cell growth. On these cells, the triethylammoniumethyl ether of 4-stilbenol MG624, a known selective antagonist of α7 and α9α10 nAChRs, has antiproliferative activity. The structural analogy of MG624 with the mitocan RDM-4'BTPI, triphenylphosphoniumbutyl ether of pterostilbene, suggested us that molecular hybridization among their three substructures (stilbenoxy residue, alkylene linker, and terminal onium) and elongation of the alkylene linker might result in novel antitumor agents with higher potency and selectivity. We found that lengthening the ethylene bridge in the triethylammonium derivatives results in more potent and selective toxicity toward adenocarcinoma and glioblastoma cells, which was paralleled by increased α7 and α9α10 nAChR antagonism and improved ability of reducing mitochondrial ATP production. Elongation of the alkylene linker was advantageous also for the triphenylphosphonium derivatives resulting in a generalized enhancement of antitumor activity, associated with increased mitotoxicity.


Assuntos
Glioblastoma/patologia , Espécies Reativas de Oxigênio/química , Receptores Nicotínicos/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
19.
Chem Biodivers ; 15(9): e1800210, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29953725

RESUMO

Alpha7 nicotinic acetylcholine receptor is emerging as a central regulator in inflammatory processes, as documented by increasing studies reported in the literature. For instance, the activation of this nicotinic receptor subtype in resident macrophages inhibits the production of pro-inflammatory cytokines, thereby attenuating local inflammatory responses, and may open a new window in the treatment of chronic inflammatory disease, such as Crohn's disease, rheumatoid arthritis, psoriasis, and asthma. In continuation of our ongoing research for the development of new cholinergic drug candidates, we selected the nicotine derivative CAP55, which was previously shown to exert anti-inflammatory effects via nicotinic stimulation, as a suitable compound for lead optimization. Through the isosteric replacement of its 3,5-disubstituted 4,5-dihydroisoxazole core with a 1,4-disubstituted 1,2,3-triazole ring, we could rapidly generate a small library of CAP55-related analogs via a one-pot copper(I)-catalyzed azide-alkyne cycloaddition. Receptor binding assays at nAChRs led to the identification of two promising derivatives, compounds 4 and 10, worthy of further pharmacological studies.


Assuntos
Macrófagos/metabolismo , Nicotina/análogos & derivados , Triazóis/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Nicotina/química , Nicotina/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Receptor Nicotínico de Acetilcolina alfa7/química
20.
FASEB J ; 32(8): 4190-4202, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29505300

RESUMO

The α3ß4 subtype is the predominant neuronal nicotinic acetylcholine receptor present in the sensory and autonomic ganglia and in a subpopulation of brain neurons. This subtype can form pentameric receptors with either 2 or 3 ß4 subunits that have different pharmacologic and functional properties. To further investigate the role of the fifth subunit, we coexpressed a dimeric construct coding for a single polypeptide containing the ß4 and α3 subunit sequences, with different monomeric subunits. With this strategy, which allowed the formation of single populations of receptors with unique stoichiometry, we demonstrated with immunofluorescence and biochemical and functional assays that only the receptors with 3 ß4 subunits are efficiently expressed at the plasma membrane. Moreover, the LFM export motif of ß4 subunit in the fifth position exerts a unique function in the regulation of the intracellular trafficking of the receptors, their exposure at the cell surface, and consequently, their function, whereas the same export motif present in the ß4 subunits forming the acetylcholine binding site is dispensable.-Crespi, A., Plutino, S., Sciaccaluga, M., Righi, M., Borgese, N., Fucile, S., Gotti, C., Colombo, S. F. The fifth subunit in α3ß4 nicotinic receptor is more than an accessory subunit.


Assuntos
Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA