Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 14(6): 1464-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776888

RESUMO

The Gram-negative bacteria Campylobactor jejuni is the primary bacteria responsible for food poisoning in industrialized countries, and acute diarrheal illness is a leading cause of mortality among children in developing countries. C. jejuni are commensal in chickens. They are particularly abundant in the caecal crypts, and poultry products are commonly infected as a result of cross-contamination during processing. The interactions between C. jejuni and chicken intestinal tissues as well as the pathogenic molecular mechanisms of colonization in humans are unknown, but identifying these factors could provide potential targets to reduce the incidence of campylobacteriosis. Recently, purified chicken intestinal mucin was shown to attenuate adherence and invasion of C. jejuni in the human colorectal adenocarcinoma cell line HCT-8 in vitro, and this effect was attributed to mucin O-glycosylation. Mucins from different regions of the chicken intestine inhibited C. jejuni binding and internalization differentially, with large intestine>small intestine>caecum. Here, we use LC-MS to perform a detailed structural analysis of O-glycans released from mucins purified from chicken large intestine, small intestine, and caecum. The O-glycans identified were abundantly sulfated compared with the human intestines, and sulfate moieties were present throughout the chicken intestinal tract. Interestingly, alpha 1-2 linked fucose residues, which have a high binding affinity to C. jejuni, were identified in the small and large intestines. Additionally, N-glycolylneuraminic/N-acetylneuraminic acid containing structures present as Sd(a)-like epitopes were identified in large intestine samples but not small intestine or caecum. O-glycan structural characterization of chicken intestinal mucins provides insights into adherence and invasion properties of C. jejuni, and may offer prospective candidate molecules aimed at reducing the incidence of infection.


Assuntos
Mucinas/química , Polissacarídeos/química , Animais , Campylobacter jejuni/patogenicidade , Galinhas , Feminino , Humanos , Intestino Grosso , Intestino Delgado
2.
Anal Chem ; 84(7): 3330-8, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22390135

RESUMO

Mucins are the principal components of mucus, and mucin glycosylation has important roles in defense, microbial adhesion, immunomodulation, inflammation, and cancer. Mucin expression and glycosylation are dynamic, responding to changes in local environment and disease. Potentially hundreds of heterogeneous glycans can substitute one mucin molecule, and it is difficult to identify biologically accessible glyco-epitopes. Thirty-seven mucins, from the reproductive and gastrointestinal (GI) tracts of six species (bovine, ovine, equine, porcine, chicken, and deer) and from two human-derived cell lines, were purified. Following optimization of mucin printing and construction of a novel mucin microarray, the glycoprofiles of the whole mucins on the microarray were compared using a panel of lectins and one antibody. Accessible glyco-motifs of GI mucins varied according to species and localization of mucin origin, with terminal fucose, the sialyl T-antigen, and N-linked oligosaccharides identified as potentially important. The occurrence of T- and sialyl T-antigen varied in bovine and ovine reproductive tract mucins, and terminal N-acetylgalactosamine (GalNAc) and sulfated carbohydrates were detected. This study introduces natural mucin microarrays as an effective tool for profiling mucin glyco-epitopes and highlights their potential for discovery of biologically important motifs in bacterial-host interactions and fertility.


Assuntos
Epitopos , Mucinas/química , Mucinas/metabolismo , Análise Serial de Proteínas/métodos , Animais , Bovinos , Linhagem Celular , Trato Gastrointestinal/metabolismo , Glicosilação , Humanos , Monossacarídeos/análise , Impressão
3.
J Med Microbiol ; 59(Pt 8): 898-903, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20466838

RESUMO

Campylobacter jejuni is a major causative agent of diarrhoeal disease worldwide in the human population. In contrast, heavy colonization of poultry typically does not lead to disease and colonized chickens are a major source of Campylobacter infections in humans. Previously, we have shown that chicken (but not human) intestinal mucus inhibits C. jejuni internalization. In this study, we test the hypothesis that chicken mucin, the main component of mucus, is responsible for this inhibition of C. jejuni virulence. Purified chicken intestinal mucin attenuated C. jejuni binding and internalization into HCT-8 cells depending on the site of origin of the mucin (large intestine>small intestine>caecum). C. jejuni invasion of HCT-8 cells was preferentially inhibited compared to bacterial binding to cells. Exposure of the mucin to sodium metaperiodate recovered bacterial invasion levels, suggesting a glycan-mediated effect. However, fucosidase or sialidase pre-treatment of mucin failed to abrogate the inhibition of C. jejuni pathogenicity. In conclusion, differences in the composition of chicken and human intestinal mucin may contribute to the differential outcome of Campylobacter infection of these hosts.


Assuntos
Aderência Bacteriana , Campylobacter jejuni/patogenicidade , Mucinas/imunologia , Animais , Linhagem Celular , Galinhas , Células Epiteliais/microbiologia , Humanos , Mucinas/isolamento & purificação , Neuraminidase/metabolismo , Ácido Periódico/metabolismo , Polissacarídeos/metabolismo , Especificidade da Espécie , Virulência , alfa-L-Fucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA