Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(8): e3002261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590318

RESUMO

Epithelial-mesenchymal transition (EMT) is an early event in cell dissemination from epithelial tissues. EMT endows cells with migratory, and sometimes invasive, capabilities and is thus a key process in embryo morphogenesis and cancer progression. So far, matrix metalloproteinases (MMPs) have not been considered as key players in EMT but rather studied for their role in matrix remodelling in later events such as cell migration per se. Here, we used Xenopus neural crest cells to assess the role of MMP28 in EMT and migration in vivo. We show that a catalytically active MMP28, expressed by neighbouring placodal cells, is required for neural crest EMT and cell migration. We provide strong evidence indicating that MMP28 is imported in the nucleus of neural crest cells where it is required for normal Twist expression. Our data demonstrate that MMP28 can act as an upstream regulator of EMT in vivo raising the possibility that other MMPs might have similar early roles in various EMT-related contexts such as cancer, fibrosis, and wound healing.


Assuntos
Transição Epitelial-Mesenquimal , Crista Neural , Movimento Celular , Núcleo Celular , Epitélio
2.
Methods Mol Biol ; 2179: 257-274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939726

RESUMO

The epithelial-mesenchymal transition (EMT) converts coherent epithelial structures into single cells. EMT is a dynamic cellular process that is not systematically completed (not all EMTs lead to single cells) and reversible (cells can re-epithelialize). EMT is orchestrated at multiple levels from transcription, to posttranslational modifications, to protein turnover. It involves remodeling of polarity and adhesion and enhances migratory capabilities. During physiological events such as embryogenesis or wound healing EMT is used to initiate cell migration, but EMT can also occur in pathological settings. In particular, EMT has been linked to fibrosis and cancer. Neural crest (NC) cells, an embryonic stem cell population whose behavior recapitulates the main steps of carcinoma progression, are a great model to study EMT. In this chapter, we provide a fully detailed protocol to extract NC cells from Xenopus embryos and culture them to study the dynamics of cell-cell adhesion, cell motility, and dispersion.


Assuntos
Rastreamento de Células/métodos , Transição Epitelial-Mesenquimal , Crista Neural/citologia , Cultura Primária de Células/métodos , Animais , Adesão Celular , Movimento Celular , Rastreamento de Células/instrumentação , Xenopus
3.
PLoS One ; 13(1): e0191751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370293

RESUMO

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin. Here we investigate the expression of Dse and Dsel in Xenopus embryos. We show that both genes are maternally expressed and exhibit partially overlapping activity in the eyes, brain, trigeminal ganglia, neural crest, adenohypophysis, sclerotome, and dorsal endoderm. Dse is specifically expressed in the epidermis, anterior surface ectoderm, spinal nerves, notochord and dermatome, whereas Dsel mRNA alone is transcribed in the spinal cord, epibranchial ganglia, prechordal mesendoderm and myotome. The expression of the two genes coincides with sites of cell differentiation in the epidermis and neural tissue. Several expression domains can be linked to previously reported phenotypes of knockout mice and clinical manifestations, such as the Musculocontractural Ehlers-Danlos syndrome and psychiatric disorders.


Assuntos
Carboidratos Epimerases/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/embriologia , Animais , Encéfalo/metabolismo , Hibridização In Situ , Sondas RNA , RNA Mensageiro/genética
4.
Dis Model Mech ; 9(6): 607-20, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101845

RESUMO

Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.


Assuntos
Movimento Celular/efeitos dos fármacos , Dermatan Sulfato/farmacologia , Síndrome de Ehlers-Danlos/patologia , Fibronectinas/metabolismo , Músculos/patologia , Crista Neural/patologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Polaridade Celular , Sulfatos de Condroitina/metabolismo , Síndrome de Ehlers-Danlos/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Ácido Idurônico/metabolismo , Modelos Biológicos , Neoplasias/patologia , Placa Neural/efeitos dos fármacos , Placa Neural/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
5.
PLoS One ; 7(6): e40045, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768216

RESUMO

Polo-like kinases (Plks) are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5). Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase) akin kinase) is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1). Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Helminto/metabolismo , Meiose , Parasitos/citologia , Parasitos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Schistosoma mansoni/citologia , Schistosoma mansoni/enzimologia , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Clonagem Molecular , Feminino , Regulação Enzimológica da Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Estágios do Ciclo de Vida , Masculino , Oócitos/metabolismo , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Xenopus , Quinase 1 Polo-Like
6.
Curr Pharm Des ; 18(24): 3579-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22607148

RESUMO

Schistosome parasites are the causative pathogens of schistosomiasis (bilharzia), a disease of worldwide significance. In terms of patient numbers, schistosomiasis ranks second to malaria as a parasitosis affecting more than 200 million people of the tropics and subtropics. Since the 1970s Praziquantel (PZQ) is the drug of choice and nearly exclusively used for treatment. However, drug resistance is an increasing threat, particularly with respect to large-scale PZQ administration programs. Last decade's research indicated that resistance against PZQ can be induced under laboratory conditions, and field studies provided first indications for the possibility of reduced PZQ efficacy. Furthermore, clear evidence for the molecular armamentarium of schistosomes with multidrug transporters was found, one of which was responding to PZQ challenge. Also the development of a vaccine still represents an elusive goal, although effort and time have been invested in this subject. In light of these facts it is commonly accepted that new drugs are urgently needed. Research on signal transduction processes in Schistosoma mansoni has provided an unexpected and novel perspective towards this end. Molecular, biochemical, and physiological studies elucidating principles of schistosome development have demonstrated the essential role of protein kinases (PKs). In humans, PKs are known to be involved in cancer development. Since a variety of approved anticancer drugs targeting PKs exist, first studies have been performed to investigate whether these drugs are able to also inhibit schistosome PKs. Indeed, promising results have been obtained indicating the potential of PKs as privileged targets for new concepts in fighting schistosomes.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Schistosoma/efeitos dos fármacos , Schistosoma/enzimologia , Esquistossomose/tratamento farmacológico , Esquistossomicidas/uso terapêutico , Animais , Humanos , Schistosoma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA