Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(10): 836-846.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084728

RESUMO

Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.


Assuntos
Glioblastoma , Células-Tronco Neurais , Camundongos , Animais , Proteína Supressora de Tumor p53 , PPAR alfa , Dieta , Mutação
2.
Nature ; 615(7953): 705-711, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922598

RESUMO

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Assuntos
Sacarose , Edulcorantes , Linfócitos T , Animais , Camundongos , Sacarose/análogos & derivados , Edulcorantes/administração & dosagem , Edulcorantes/efeitos adversos , Edulcorantes/farmacologia , Edulcorantes/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Inocuidade dos Alimentos , Sinalização do Cálcio/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Infecções Bacterianas/imunologia , Neoplasias/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
3.
Ann N Y Acad Sci ; 1506(1): 55-73, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34414571

RESUMO

There is an increasing appreciation for the role of metabolism in cell signaling and cell decision making. Precise metabolic control is essential in development, as evident by the disorders caused by mutations in metabolic enzymes. The metabolic profile of cells is often cell-type specific, changing as cells differentiate or during tumorigenesis. Recent evidence has shown that changes in metabolism are not merely a consequence of changes in cell state but that metabolites can serve to promote and/or inhibit these changes. Metabolites can link metabolic pathways with cell signaling pathways via several mechanisms, for example, by serving as substrates for protein post-translational modifications, by affecting enzyme activity via allosteric mechanisms, or by altering epigenetic markers. Unraveling the complex interactions governing metabolism, gene expression, and protein activity that ultimately govern a cell's fate will require new tools and interactions across disciplines. On March 24 and 25, 2021, experts in cell metabolism, developmental biology, and human disease met virtually for the Keystone eSymposium, "Metabolic Decisions in Development and Disease." The discussions explored how metabolites impact cellular and developmental decisions in a diverse range of model systems used to investigate normal development, developmental disorders, dietary effects, and cancer-mediated changes in metabolism.


Assuntos
Congressos como Assunto/tendências , Desenvolvimento Humano/fisiologia , Doenças Metabólicas/fisiopatologia , Redes e Vias Metabólicas/fisiologia , Neoplasias/fisiopatologia , Relatório de Pesquisa , Animais , Epigênese Genética/fisiologia , Humanos , Doenças Metabólicas/genética , Neoplasias/genética , Transdução de Sinais/fisiologia
4.
PLoS Biol ; 19(5): e3001230, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945525

RESUMO

Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type-specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.


Assuntos
Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Insuficiência Renal Crônica/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose/fisiologia , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Humanos , Rim/patologia , Lipase/fisiologia , Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Obesidade/complicações , Insuficiência Renal Crônica/fisiopatologia , Triglicerídeos/metabolismo
5.
EMBO J ; 38(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804004

RESUMO

Rewired metabolism of glutamine in cancer has been well documented, but less is known about other amino acids such as histidine. Here, we use Drosophila cancer models to show that decreasing the concentration of histidine in the diet strongly inhibits the growth of mutant clones induced by loss of Nerfin-1 or gain of Notch activity. In contrast, changes in dietary histidine have much less effect on the growth of wildtype neural stem cells and Prospero neural tumours. The reliance of tumours on dietary histidine and also on histidine decarboxylase (Hdc) depends upon their growth requirement for Myc. We demonstrate that Myc overexpression in nerfin-1 tumours is sufficient to switch their mode of growth from histidine/Hdc sensitive to resistant. This study suggests that perturbations in histidine metabolism selectively target neural tumours that grow via a dedifferentiation process involving large cell size increases driven by Myc.


Assuntos
Desdiferenciação Celular , Neoplasias do Sistema Nervoso Central/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histidina/administração & dosagem , Células-Tronco Neurais/patologia , Fatores de Transcrição/metabolismo , Animais , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1260-1272, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28735096

RESUMO

Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Assuntos
Estresse do Retículo Endoplasmático , Metabolismo Energético , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Estresse Oxidativo , Animais , Humanos
7.
PLoS Genet ; 12(8): e1006154, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27500738

RESUMO

Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes.


Assuntos
Acil-CoA Desidrogenase/genética , Proteínas de Drosophila/genética , Metabolismo dos Lipídeos/genética , Oxirredutases/genética , Fosfatidilinositol 3-Quinases/genética , Acil-CoA Desidrogenase/metabolismo , Animais , Proliferação de Células/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Larva/genética , Larva/metabolismo , Gotículas Lipídicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
8.
PLoS Biol ; 11(9): e1001666, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24086110

RESUMO

Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several "fetal" genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled expression of the transcription factor Hand1 determines oxygen consumption by inhibition of lipid metabolism in the fetal and adult cardiomyocyte, leading to downregulation of mitochondrial energy generation. Hand1 is under direct transcriptional control by HIF1α. Transgenic mice prolonging cardiac Hand1 expression die immediately following birth, failing to activate the neonatal lipid metabolising gene expression programme. Deletion of Hand1 in embryonic cardiomyocytes results in premature expression of these genes. Using metabolic flux analysis, we show that Hand1 expression controls cardiomyocyte oxygen consumption by direct transcriptional repression of lipid metabolising genes. This leads, in turn, to increased production of lactate from glucose, decreased lipid oxidation, reduced inner mitochondrial membrane potential, and mitochondrial ATP generation. We found that this pathway is active in adult cardiomyocytes. Up-regulation of Hand1 is protective in a mouse model of myocardial ischaemia. We propose that Hand1 is part of a novel regulatory pathway linking cardiac oxygen levels with oxygen consumption. Understanding hypoxia adaptation in the fetal heart may allow development of strategies to protect cardiomyocytes vulnerable to ischaemia, for example during cardiac ischaemia or surgery.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Consumo de Oxigênio/genética , Trifosfato de Adenosina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ativação Transcricional
9.
Cell ; 146(3): 435-47, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816278

RESUMO

Developing animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Privação de Alimentos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliploidia
10.
Nature ; 471(7339): 508-12, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21346761

RESUMO

Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.


Assuntos
Adipócitos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adipócitos/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Corpo Adiposo/citologia , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Larva/citologia , Larva/efeitos dos fármacos , Larva/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Development ; 132(17): 3835-45, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16049114

RESUMO

The Drosophila central nervous system is generated by stem-cell-like progenitors called neuroblasts. Early in development, neuroblasts switch through a temporal series of transcription factors modulating neuronal fate according to the time of birth. At later stages, it is known that neuroblasts switch on expression of Grainyhead (Grh) and maintain it through many subsequent divisions. We report that the function of this conserved transcription factor is to specify the regionalised patterns of neurogenesis that are characteristic of postembryonic stages. In the thorax, Grh prolongs neural proliferation by maintaining a mitotically active neuroblast. In the abdomen, Grh terminates neural proliferation by regulating the competence of neuroblasts to undergo apoptosis in response to Abdominal-A expression. This study shows how a factor specific to late-stage neural progenitors can regulate the time at which neural proliferation stops, and identifies mechanisms linking it to the Hox axial patterning system.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Abdome/embriologia , Animais , Apoptose/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Cistos Glanglionares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mitose , Proteínas Nucleares/genética , Fatores de Transcrição/genética
12.
Dev Cell ; 7(6): 885-95, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15572130

RESUMO

Many different intercellular signaling pathways are known but, for most, it is unclear whether they can generate oscillating cell behaviors. Here we use time-lapse analysis of Drosophila embryogenesis to show that oenocytes delaminate from the ectoderm in discrete bursts of three. This pulsatile process has a 1 hour period, occurs without cell division, and requires a localized EGF receptor (EGFR) response. High-threshold EGFR targets are sequentially activated in rings of three cells, prefiguring the temporal pattern of delamination. Surprisingly, widespread misexpression of the relevant activating ligand, Spitz, is compatible with robust delamination pulses. Moreover, although Spitz ligand becomes limiting after only two pulses, artificially prolonging its secretion generates up to six additional cycles, revealing a rhythmic underlying mechanism. These findings illustrate how intercellular signaling and cell movements can generate multiple cycles of a cell behavior, despite individual cells experiencing only one cycle of receptor activation.


Assuntos
Drosophila/embriologia , Ectoderma/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Divisão Celular , Proteínas de Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas do Olho/metabolismo , Imuno-Histoquímica , Laminas/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Receptores Notch , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA