Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2123020119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446689

RESUMO

The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.


Assuntos
Células Intersticiais de Cajal , Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Miócitos de Músculo Liso , Peristaltismo
2.
Gastroenterology ; 161(2): 608-622.e7, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33895170

RESUMO

BACKGROUND & AIMS: Constipation is commonly associated with diabetes. Serotonin (5-HT), produced predominantly by enterochromaffin (EC) cells via tryptophan hydroxylase 1 (TPH1), is a key modulator of gastrointestinal (GI) motility. However, the role of serotonergic signaling in constipation associated with diabetes is unknown. METHODS: We generated EC cell reporter Tph1-tdTom, EC cell-depleted Tph1-DTA, combined Tph1-tdTom-DTA, and interstitial cell of Cajal (ICC)-specific Kit-GCaMP6 mice. Male mice and surgically ovariectomized female mice were fed a high-fat high-sucrose diet to induce diabetes. The effect of serotonergic signaling on GI motility was studied by examining 5-HT receptor expression in the colon and in vivo GI transit, colonic migrating motor complexes (CMMCs), and calcium imaging in mice treated with either a 5-HT2B receptor (HTR2B) antagonist or agonist. RESULTS: Colonic transit was delayed in males with diabetes, although colonic Tph1+ cell density and 5-HT levels were increased. Colonic transit was not further reduced in diabetic mice by EC cell depletion. The HTR2B protein, predominantly expressed by colonic ICCs, was markedly decreased in the colonic muscles of males and ovariectomized females with diabetes. Ca2+ activity in colonic ICCs was decreased in diabetic males. Treatment with an HTR2B antagonist impaired CMMCs and colonic motility in healthy males, whereas treatment with an HTR2B agonist improved CMMCs and colonic motility in males with diabetes. Colonic transit in ovariectomized females with diabetes was also improved significantly by the HTR2B agonist treatment. CONCLUSIONS: Impaired colonic motility in mice with diabetes was improved by enhancing HTR2B signaling. The HTR2B agonist may provide therapeutic benefits for constipation associated with diabetes.


Assuntos
Colo/efeitos dos fármacos , Constipação Intestinal/prevenção & controle , Complicações do Diabetes/prevenção & controle , Motilidade Gastrointestinal/efeitos dos fármacos , Indóis/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tiofenos/farmacologia , Animais , Sinalização do Cálcio , Colo/metabolismo , Colo/fisiopatologia , Constipação Intestinal/etiologia , Constipação Intestinal/metabolismo , Constipação Intestinal/fisiopatologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Modelos Animais de Doenças , Feminino , Genes Reporter , Células Intersticiais de Cajal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovariectomia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
3.
J Med Chem ; 63(19): 11131-11148, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32894018

RESUMO

Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships. The properties of analogues, including solubility, stability, and toxicity, suggest that the BHC scaffold may be useful for developing therapeutics. Inhibition of actin-activated ATPase activity of fast skeletal and cardiac muscle myosin II, inhibition of skeletal muscle contractility ex vivo, and slowing of in vitro actin-sliding velocity were measured. Several analogues with aromatic side arms showed improved potency (half-maximal inhibitory concentration (IC50) <1 µM) and selectivity (≥12-fold) for skeletal myosin versus cardiac myosin compared to BHC. Several analogues blocked neurotransmission, suggesting that they are selective for nonmuscle myosin II over skeletal myosin. Competition and molecular docking studies suggest that BHC and blebbistatin bind to the same site on myosin.


Assuntos
4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacologia , Iminas/química , Miosinas/antagonistas & inibidores , 4-Hidroxicumarinas/síntese química , Adenosina Trifosfatases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Relação Estrutura-Atividade
4.
Biol Reprod ; 92(4): 102, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25788664

RESUMO

Growing evidence suggests important roles for specialized platelet-derived growth factor receptor alpha-positive (PDGFRalpha(+)) cells in regulating the behaviors of visceral smooth muscle organs. Examination of the female reproductive tracts of mice and monkeys showed that PDGFRalpha(+) cells form extensive networks in ovary, oviduct, and uterus. PDGFRalpha(+) cells were located in discrete locations within these organs, and their distribution and density were similar in rodents and primates. PDGFRalpha(+) cells were distinct from smooth muscle cells and interstitial cells of Cajal (ICC). This was demonstrated with immunohistochemical techniques and by performing molecular expression studies on PDGFRalpha(+) cells from mice with enhanced green fluorescent protein driven off of the endogenous promoter for Pdgfralpha. Significant differences in gene expression were found in PDGFRalpha(+) cells from ovary, oviduct, and uterus. Differences in gene expression were also detected in cells from different tissue regions within the same organ (e.g., uterine myometrium vs. endometrium). PDGFRalpha(+) cells are unlikely to provide pacemaker activity because they lack significant expression of key pacemaker genes found in ICC (Kit and Ano1). Gja1 encoding connexin 43 was expressed at relatively high levels in PDGFRalpha(+) cells (except in the ovary), suggesting these cells can form gap junctions to one another and neighboring smooth muscle cells. PDGFRalpha(+) cells also expressed the early response transcription factor and proto-oncogene Fos, particularly in the ovary. These data demonstrate extensive distribution of PDGFRalpha(+) cells throughout the female reproductive tract. These cells are a heterogeneous population of cells that are likely to contribute to different aspects of physiological regulation in the various anatomical niches they occupy.


Assuntos
Genitália Feminina/citologia , Animais , Conexina 43/biossíntese , Conexina 43/genética , Ciclo Estral , Feminino , Proteínas de Fluorescência Verde , Células Intersticiais de Cajal , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Especificidade da Espécie
5.
J Neurosci ; 28(9): 2131-46, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305247

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) regulates multiple aspects of spinal motoneuron (MN) development, including gene expression, target selection, survival, and synapse elimination, and mice lacking either GDNF or its receptors GDNF family receptor alpha1 (GFRalpha1) and Ret exhibit a 25% reduction of lumbar MNs at postnatal day 0 (P0). Whether this loss reflects a generic trophic role for GDNF and thus a reduction of all MN subpopulations, or a more restricted role affecting only specific MN subpopulations, such as those innervating individual muscles, remains unclear. We therefore examined MN number and innervation in mice in which Ret, GFRalpha1, or GDNF was deleted and replaced by reporter alleles. Whereas nearly all hindlimb muscles exhibited normal gross innervation, intrafusal muscle spindles displayed a significant loss of innervation in most but not all muscles at P0. Furthermore, we observed a dramatic and restricted loss of small myelinated axons in the lumbar ventral roots of adult mice in which the function of either Ret or GFRalpha1 was inactivated in MNs early in development. Finally, we demonstrated that the period during which spindle-innervating MNs require GDNF for survival is restricted to early neonatal development, because mice in which the function of Ret or GFRalpha1 was inactivated after P5 failed to exhibit denervation of muscle spindles or MN loss. Therefore, although GDNF influences several aspects of MN development, the survival-promoting effects of GDNF during programmed cell death are mostly confined to spindle-innervating MNs.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Neurônios Motores/classificação , Neurônios Motores/fisiologia , Medula Espinal/citologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membro Posterior/embriologia , Membro Posterior/crescimento & desenvolvimento , Membro Posterior/inervação , Camundongos , Camundongos Knockout , Fusos Musculares/embriologia , Fusos Musculares/crescimento & desenvolvimento , Fusos Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas c-ret/deficiência , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
6.
J Neurosci ; 25(23): 5595-603, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15944387

RESUMO

c-Jun is a transcription factor that is involved in various cellular events, including apoptotic cell death. For example, phosphorylation of c-Jun is one of the earliest biochemical changes detected in dying sympathetic neurons after NGF deprivation in vitro. However, currently, it is not known whether a similar molecular event is involved in the developmental programmed cell death (PCD) of neurons in vivo. We observed that only a subpopulation of motoneurons (MNs) exhibit c-Jun phosphorylation during the PCD period in chick [embryonic day 5 (E5)-E12] and mouse (E13-E18) embryos. Experimental perturbation of MN survival-promoting signals by limb bud removal (reduced signals) or by activity blockade (increased signals) in the chick embryo demonstrated that the presence of those signals is negatively correlated with the number of c-Jun-phosphorylated MNs. This suggests that insufficient survival signals (e.g., neurotrophic factors) may induce c-Jun phosphorylation of MNs in vivo. Consistent with the idea that c-Jun phosphorylation is a reversible event during normal PCD of MNs, we found that c-Jun phosphorylation was transiently observed in a subpopulation of mouse MNs rescued from PCD by deletion of the proapoptotic gene Bax. Inhibition of c-Jun signaling significantly reduced MN death in chick embryo, indicating that activation of c-Jun signaling is necessary for the PCD of MNs. Together, c-Jun phosphorylation appears to be required for the initiation of an early and reversible event in the intracellular PCD cascade in vivo after loss of survival-promoting signals such as neurotrophic factors.


Assuntos
Apoptose , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Contagem de Células , Embrião de Galinha , Técnicas In Vitro , Botões de Extremidades/embriologia , Botões de Extremidades/inervação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-jun/genética , Transdução de Sinais , Medula Espinal/citologia , Proteína X Associada a bcl-2/genética
7.
J Neurosci ; 23(19): 7298-310, 2003 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12917363

RESUMO

The removal of excess neurons by programmed cell death (PCD) is believed to be critical for the proper development and function of the nervous system. A major role of this neuronal loss is to attain quantitative matching of neurons with their targets and afferents. Because motoneurons (MNs) in Bax knock-out (Bax KO) mice fail to undergo PCD in the face of normal target muscle development, we asked whether the excess rescued neurons in Bax KO mice can develop normally. We observed many small atrophied MNs in postnatal Bax KO mice, and these failed to innervate limb muscle targets. When examined embryonically during the PCD period, however, these excess MNs had initiated target innervation. To examine whether a limitation in trophic factor availability is responsible for postnatal MN atrophy and loss of innervation, we applied glial cell line-derived neurotrophic factor (GDNF) to neonatal mice. GDNF injection for 7-14 d induced the regrowth and reinnervation of muscle targets by atrophic MNs in Bax KO mice and prevented the normal postnatal death of MNs in wild-type mice. These results indicate that, although initially all of the MNs, including those rescued by Bax deletion, are able to project to and innervate targets, because of limited target-derived signals required for maintaining innervation and growth, only a subpopulation can grow and retain target contacts postnatally. Although sensory neurons in the dorsal root ganglia are also rescued from PCD by Bax deletion, their subsequent development is less affected than that of MNs.


Assuntos
Apoptose , Neurônios Motores/citologia , Músculo Esquelético/inervação , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/genética , Animais , Animais Recém-Nascidos , Atrofia , Axônios/fisiologia , Axônios/ultraestrutura , Divisão Celular , Gânglios Espinais/citologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Fatores de Crescimento Neural/farmacologia , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Junção Neuromuscular/citologia , Junção Neuromuscular/crescimento & desenvolvimento , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA