Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675405

RESUMO

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteômica , Receptores de Antígenos Quiméricos/metabolismo , Recidiva
2.
Artigo em Inglês | MEDLINE | ID: mdl-33031032

RESUMO

We consider the problem of finding a consensus tumor evolution tree from a set of conflicting input trees. In contrast to traditional phylogenetic trees, the tumor trees we consider do not have the same set of labels applied to the leaves of each tree. We describe several distance measures between these tumor trees. Our GraPhyC algorithm solves the consensus problem using a weighted directed graph where vertices are sets of mutations and edges are weighted based on the number of times a parental relationship is observed between their constituent mutations in the input trees. We find a minimum weight spanning arborescence in this graph and prove that it minimizes the total distance to all input trees for one of our distance measures. We also describe several extensions of our GraPhyC approach. On simulated data we show that GraPhyC outperforms a baseline method and demonstrate that GraPhyC can be an effective means of computing centroids in k-medians clustering. We analyze two real sequencing datasets and find that GraPhyC is able to identify a tree not included in the set of input trees, but that contains characteristics supported by other reported evolutionary reconstructions of this tumor.


Assuntos
Algoritmos , Neoplasias , Análise por Conglomerados , Consenso , Humanos , Neoplasias/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA