Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 266: 104415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173506

RESUMO

In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 µm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.


Assuntos
Fígado , Microplásticos , Estresse Oxidativo , Polipropilenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Polipropilenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Biomarcadores/metabolismo
2.
Sci Total Environ ; 918: 170499, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38296101

RESUMO

Polypropylene based medical devices significantly increased production and usage in COVID-19 pandemic states, and this material is very resilient in the environment. Thus, more than ever, rapid action is needed to reduce this pollution. This study focuses on the degradation of polypropylene microplastics (PP MPs) by unique marine bacterial strains obtained from the Thoundi (Bacillus tropicus, Bacillus cereus, Stenotrophomonas acidaminiphila, and Brucella pseudintermedia) and Rameshwaram coasts (Bacillus cereus). Those above five bacterial strains were chosen after preliminary screening of their hydrophobicity, biofilm-forming capabilities, and responsiveness to the zone of clearance technique. During the biodegradation process (28 days), the growth, metabolic activity, and viability of these five isolates were all raised. After the post-biodegradation process, the weight loss percentages of the mentioned bacterial strains treated with PP MPs gradually decreased, with values of 51.5 ± 0.5 %, 47.5 ± 0.5 %, 33 ± 1 %, 28.5 ± 0.5 and 35.5 ± 0.5 %, respectively. UV-Vis DRS and SEM analysis confirmed that bacterial strains adhering to MPs cause cracks and cavities on their surface. The degradation of PP MPs can be inferred from alterations in the FT-IR spectrum, specifically in the carbonyl group range of 1100-1700 cm-1, as well as changes in the 1H NMR spectrum, including chemical shift and proton peak pattern alterations. Bacterial strains facilitated the degradation of PP MPs through the secretion of hydrolase-categorized enzymes of protease, lipase, and esterase. The findings of this study indicate that marine bacteria may possess distinctive characteristics that facilitate the degradation of plastic waste and contribute to environmental conservation.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Pandemias , Biodegradação Ambiental , Bacillus cereus/metabolismo , Poluentes Químicos da Água/análise
3.
Biomedicines ; 11(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626781

RESUMO

The utilization of nanoparticles derived from algae has generated increasing attention owing to their environmentally sustainable characteristics and their capacity to interact harmoniously with biologically active metabolites. The present study utilized P. boergesenii for the purpose of synthesizing copper oxide nanoparticles (CuONPs), which were subsequently subjected to in vitro assessment against various bacterial pathogens and cancer cells A375. The biosynthesized CuONPs were subjected to various analytical techniques including FTIR, XRD, HRSEM, TEM, and Zeta sizer analyses in order to characterize their stability and assess their size distribution. The utilization of Fourier Transform Infrared (FTIR) analysis has provided confirmation that the algal metabolites serve to stabilize the CuONPs and function as capping agents. The X-ray diffraction (XRD) analysis revealed a distinct peak associated with the (103) plane, characterized by its sharpness and high intensity, indicating its crystalline properties. The size of the CuONPs in the tetragonal crystalline structure was measured to be 76 nm, and they exhibited a negative zeta potential. The biological assay demonstrated that the CuONPs exhibited significant antibacterial activity when tested against both Bacillus subtilis and Escherichia coli. The cytotoxic effects of CuONPs and cisplatin, when tested at a concentration of 100 µg/mL on the A375 malignant melanoma cell line, were approximately 70% and 95%, respectively. The CuONPs that were synthesized demonstrated significant potential in terms of their antibacterial properties and their ability to inhibit the growth of malignant melanoma cells.

4.
Toxics ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36977047

RESUMO

In recent years, polypropylene microplastic has persisted in freshwater ecosystems and biota, forming ever-growing threats. This research aimed to prepare polypropylene microplastics and evaluate their toxicity to the filter feeder Oreochromis mossambicus. In this research, fish were given a dietary supplement of polypropylene microplastics at 100, 500, and 1000 mg/kg for acute (96 h) and sub-acute (14 days) durations to assess toxic effects on liver tissues. FTIR results revealed the presence of polypropylene microplastic in their digestion matter. The ingestion of microplastics in O. mossambicus led to fluctuations in homeostasis, an upsurge in reactive oxygen species (ROS) levels, an alteration in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx); a promotion in the oxidation of lipid molecules; and a denaturation in the neurotransmitter enzyme acetylcholinesterase (AChE). Our data indicated that sustained exposure to microplastics (14 days) produced a more severe threat than acute exposure (96 h). In addition, higher apoptosis, DNA damage (genotoxicity), and histological changes were found in the liver tissues of the sub-acute (14 days) microplastics-treated groups. This research indicated that the constant ingestion of polypropylene microplastics is detrimental to freshwater environments and leads to ecological threats.

5.
Bioresour Technol ; 374: 128769, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841396

RESUMO

The investigation on utilizing macroalgae for industrial scale biodiesel production is an imperative action needed for commercialization. In the present research work, the biooil from marine macroalgae Dictyota bartayresiana was used for biodiesel production using calcium oxide nanocatalyst synthesized using waste collected from building demolition site. The optimization results obtained were the calcination temperature 573 °C, concentration of catalyst 5.62%, methanol to oil molar ratio 14.36:1, temperature 55.7 °C and time 67.57 min for the transesterification with the biodiesel yield of 89.6%. The techno-economic aspects of biodiesel production were investigated for 20 MT/batch. The return on investment and internal rate of return from the biodiesel production plant was found to be 25.39% and 31.13% respectively. The plant payback period was about 3.94 years with a positive NPV value of about 14,053,000 $/yr. Thus, Dictyota bartayresiana biomass can be efficiently used for the sustainable production of biodiesel.


Assuntos
Phaeophyceae , Alga Marinha , Óleos de Plantas , Biocombustíveis/análise , Metanol , Catálise , Esterificação
6.
Environ Sci Pollut Res Int ; 30(5): 13483-13494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136182

RESUMO

Polypropylene microplastics are the leading contaminant in aquatic environments, although research on their toxicity remains scarce. The proposed research focuses on the harmful consequences of acute exposure to polypropylene microplastics in Daphnia similis. This work converts widely available polypropylene bags into microplastics using xylene. FTIR findings demonstrated the lack of xylene residue in the produced polypropylene microplastic particles, which were spherical and ranged in size from 11.86 to 44.62 µm (FE-SEM). The results indicate that acute exposure to polypropylene microplastics causes immobility in D. similis. Ingestion of microplastics enhances the generation of reactive oxygen species (ROS), as shown by biochemical studies. Due to the production of free radicals in D. similis, the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and a non-antioxidant enzyme of reduced glutathione (GSH) and also oxidative stress effects in lipid (lipid peroxidation - LPO), protein (carbonyl protein - CP) were increased. Additionally, the amount of the neurotransmitter enzyme acetylcholinesterase (AChE) activity was decreased. These findings indicate that the accumulation of polypropylene microplastics in the bodies of filter-feeding organisms should aggravate toxicity in the freshwater environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Polipropilenos , Daphnia , Acetilcolinesterase/metabolismo , Xilenos , Estresse Oxidativo , Ingestão de Alimentos , Água , Poluentes Químicos da Água/análise , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
7.
Chemosphere ; 296: 133990, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35189196

RESUMO

Polypropylene microplastic particles are one of the predominant pollutants in marine ecosystems and their toxic effects are unknown in aquatic biota. The study aims to prepare the spherical shaped polypropylene microplastics (size range 11.86 µm-44.62 µm) and assess their toxic effects (1, 25, 50, 75 and 100 µg/mL) in various life stages (nauplii, metanauplii and juvenile) of marine microcrustacean Artemia salina within 48 h. In addition, microplastics ingestion by Artemia nauplii was proved by FTIR analysis. The results revealed, microplastics accumulation in their tract leads to change in their homeostasis, as followed increase in the oxidative burst causes mortality in nauplii (LC50 40.947 µg/mL) and meta nauplii (LC50 51.954 µg/mL). In juvenile, swimming behaviour was changed. Moreover, microplastic consumption disturbs the antioxidant biomarkers such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione -S- Transferase (GST) and reduces the neurotransmitter enzyme acetylcholinesterase (AChE) activity. In addition, histology of juvenile Artemia showed damage in epithelial cells. This study indicates that exposure to polypropylene microplastics is more harmful to zooplanktonic organisms of the marine ecosystem.


Assuntos
Microplásticos , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Artemia , Ecossistema , Plásticos/toxicidade , Polipropilenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Res ; 210: 112979, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218714

RESUMO

In this present scenario, hydroxyapatite (HAp) nanostructures were synthesized through green routes for biomedical applications, particularly remediation towards human pathogens and cancer cells. The present study aims at forming non-toxic and eco-friendly silver (Ag+) doped HAp using Polyethylene glycol (PEG), Cetyl Trimethyl ammonium bromide (CTAB) and curcumin. Ag+ doped HAp nanoparticles (NPs) were prepared by the sol-gel method with a cube and rod-like morphology. Ag-HApNPs showed a sharp and well-defined diffraction peak, which possesses the hexagonal crystalline structure with space group P63/m. The Fourier-transform infrared spectroscopy and Raman spectra confirmed the formation of Ag-HApNPs, and the bandgap values were obtained using UV-DRS analysis. The Ag-HApNPs with PEG, CTAB and curcumin might be fabricated materials were examined against antibacterial, antifungal, antioxidant, and cytotoxic activities, which provided exemplary biomedical applications. Overall, Ag-HApNPs can be used as potential drug delivery and perspectives to control multidrug-resistant pathogens.


Assuntos
Curcumina , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacologia , Cetrimônio , Curcumina/farmacologia , Durapatita/química , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Saudi J Biol Sci ; 28(1): 148-156, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424291

RESUMO

Globally, the farmers are struggling with polyphagous insect pest, and it is the number one enemy of agri-products, which made plenty of economic deterioration. Spodoptera litura and Helicoverpa armigera are the agronomically important polyphagous pests. Most of the farmers are predominately dependent on synthetic chemical insecticides (SCIs) for battle against polyphagous pets. As a result, the broad spectrum usage of SCIs led a lot of detrimental outcomes only inconsequently the researchers search the former-friendly phyto-pesticidal approach. In the present investigation, leaf ethanol extract (LEE) and silver nanoparticles (AgNPs) of A. catechu (Ac) were subjected to various spectral (TLC, CC, UV, FTIR, XRD and SEM) analyses. Larval and pupal toxicity of A. catechu Ac-LEE and Ac-AgNPs were tested against selected polyphagous insect pests. The significant larval and pupal toxicity were experimentally proven, and the highest toxicity noticed in AgNPs than Ac-LEE. The larval and pupal toxicity of Ac-AgNPs tested against S. litura and H. armigera LC50/LC90 values were 71.04/ 74.78, 85.33/ 88.91 µg/mL and 92.57/ 96.21 and 124.43/ 129.95 µg/mL respectively. Ac-AgNPs could be potential phyto-pesticidal effectiveness against selected polyphagous insect pests. In globally, it is significantly sufficient ratification giving towards the prevention of many unauthorized SCPs.

10.
Saudi J Biol Sci ; 28(1): 901-910, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424382

RESUMO

This study presents ethanol's fabrication by fermenting the golden trumpet flower (Allamanda schottii L) with the yeast strain Saccharomyces cerevisiae. The changes in different parameters during fermentation were studied and optimized while producing the ethanol and the end product was subjected to emission test study by blending petrol and ethanol. The Allamanda floral substrate contains 65% polysaccharides. The strain S. cerevisiae was obtained in the form of baker's yeast from a domestic shop. For 100 ml of slurry, the highest bioethanol yield recorded was about 18.75 ml via optimization of different culture conditions, including a 1:8 ratio for slurry preparation, maintained under 35 °C, 5.5 pH, 72 h. old inoculum with a quantity of 3.75 g 100 ml-1, fermented for120 h. The highest yield of bioethanol was acquired under the addition of urea. This technique & design is capable of industrial-scale fabrication of bioethanol by using A. schottii floral substrates. This research was conducted to fabricate ethanol by fermentation (A. schottii L) floral substrate with S. cerevisiae. The optimum physiochemical parameters required to obtain the highest yield of bioethanol from A. schottii flower by fermentation was studied. The immobilization strategy with a cheap agricultural substrate and magnetic nanoparticles were also studied. The engine performance and emission studies were done with different blends of petrol and bio-ethanol.

11.
Sci Rep ; 10(1): 18912, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144607

RESUMO

A hybrid and straightforward nanosystem that can be used simultaneously for cancer-targeted fluorescence imaging and targeted drug delivery in vitro was reported in this study. A chitosan (CS) polymer coated with reduced graphene oxide (rGO) and implanted with Fe3O4 nanoparticles was fabricated. The fundamental physicochemical properties were confirmed via FT-IR, XRD, FE-SEM, HR-TEM, XPS, and VSM analysis. The in vivo toxicity study in zebrafish showed that the nanocomposite was not toxic. The in vitro drug loading amount was 0.448 mg/mL-1 for doxorubicin, an anticancer therapeutic, in the rGO/Fe3O4/CS nanocomposite. Furthermore, the pH-regulated release was observed using folic acid. Cellular uptake and multimodal imaging revealed the benefit of the folic acid-conjugated nanocomposite as a drug carrier, which remarkably improves the doxorubicin accumulation inside the cancer cells over-express folate receptors. The rGO/Fe3O4/CS nanocomposite showed enhanced antibiofilm and antioxidant properties compared to other materials. This study's outcomes support the use of the nanocomposite in targeted chemotherapy and the potential applications in the polymer, cosmetic, biomedical, and food industries.


Assuntos
Quitosana/química , Doxorrubicina/farmacologia , Ácido Fólico/farmacologia , Grafite/química , Neoplasias/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Humanos , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro , Microscopia de Fluorescência , Imagem Molecular , Nanocompostos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade
12.
Saudi J Biol Sci ; 27(7): 1892-1899, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565711

RESUMO

Microbial enhanced oil recovery (MEOR) is a kind of enhanced oil recovery (EOR) development, often used as a tertiary stage where oil recovery is no longer possible utilizing primary and secondary conventional techniques. Among a few potential natural operators valuable for MEOR, biosurfactants, biopolymers and biosurfactant based nanoparticles assume key jobs. Biosurfactant which are produced by microorganisms' act as are surface active agents that can be used as an alternative to chemically synthesized surfactants. Pseudomonas aeruginosa TEN01, a gram-negative bacterium isolated from the petroleum industry is a potential biosurfactant (Rhamnolipid) producer using cassava waste as the substrate. This work focuses on production and characterization of rhamnolipid from P. aeruginosa TEN01 and its use in enhanced oil recovery. The effectiveness of Chitosan that is deacetylated form of chitin which is a biopolymer that provides density and viscosity to the fluids is not known in enhanced oil recovery yet and so it is studied. Moreover, the fabrication of biosurfactant-mediated silver nanocrystals and its application in enhanced oil recovery is also studied. Sand-Pack column was constructed and the mechanism of oil recovery in the column was studied. While incubating the crude oil containing sand packed column with Biosurfactant-biopolymer and brine flooding in the ratio of 1:2, and Biosurfactant incubation - flooding with 3 g/l of biopolymer was found to be 34.28% and 44.5% respectively. The biosurfactant based silver nanoparticles are non-toxic and have better stability when compared to chemically synthesized silver nanoparticles. The oil recovery percentage by chemical based Ag NPs and biosurfactant based Ag NPs are 14.94% and 14.28% respectively.

13.
Microb Pathog ; 141: 103992, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988009

RESUMO

ß-Glucan-binding protein (ßGBP) is important for the rational expansion of molecular biology. Here, zinc oxide nanoparticle (ZnONP) was synthesized using ßGBP from the crab Scylla serrata (Ss-ßGBP-ZnONP). Ss-ßGBP-ZnONP was observed as a 100 kDa band on sodium dodecyl sulfate polyacrylamide gel and characterized with UV-vis spectroscopy at 350 nm. X-ray diffraction analysis displayed values consistent with those for zincite. Fourier transform infrared spectroscopy revealed the presence of functional groups, including amide, alcohol, alkane, alkyl halide, and alkene groups. The zeta potential (-5.36 mV) of these particles indicated their stability, and transmission electron microscopy revealed the presence of 50 nm nanocones. Ss-ßGBP-ZnONPs were tested at 100 µg/mL against the gram-positive Enterococcus faecalis and gram-negative Pseudomanas aeruginosa using confocal laser scanning microscopy and the bacterial viability assay was also performed. The growth of MCF7 breast cancer cells was inhibited following treatment with 75 µg/mL Ss-ßGBP-ZnONPs. Thus, Ss-ßGBP-ZnONPs have the ability to control the growth of pathogenic bacteria and inhibit the viability of MCF7 breast cancer cell lines.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Lectinas/farmacologia , Nanopartículas Metálicas , Enterococcus faecalis/efeitos dos fármacos , Humanos , Células MCF-7/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Microb Pathog ; 139: 103893, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778757

RESUMO

Soil contamination has enlarged over the decades due to intensive use of pesticides and chemical fertilizers in agronomy. Earthworms are significant organisms in the soil community. Earthworms are the major role in soil fertility in most ecological system and the production of biogenic structures. Moreover, earthworm gut mucus enhances the beneficial soil microorganism potential biological activities. They are used as model organisms for assessing the ecological risks of chemicals. Enrichment of essential nutrients in soil through earthworm is a cost-effective and eco-friendly approach. In India, the organophosphorus pesticide monocrotophos is commonly used to control agricultural pests. Hence, it is important to study the effect of monocrotophos on the gut microbiota in Lampito mauritii. A 15-day exposure to a low (1/10th of the LC50 after 96 h i.e., 0.093 ppm kg-1) and high sublethal concentration (1/3rd of the LC50 after 96 h i.e., 0.311 ppm kg-1) of monocrotophos led to reduced proliferation of the gut microbiota in L. mauritii. However, exposure for 30 days led to a recuperation of the microbial populations to near control values. Among the eight bacterial and five fungal species that inhabit the gut of L. mauritii, only six bacterial and three fungal species were able to survive after exposure to monocrotophos. In addition to the study, histopathological changes were observed in the intestine of L.mauritii after application of lower sublethal concentration of monocrotophos. Severe pathological changes such as vacuolization, degenerated nuclei, damaged villi and congestion of the blood sinuses were noticed in the intestine on 1st and, 5th day of the experiment. But in 30th day the damages were slowly recovered due to degradation of monocrotophos by the presence of some pesticides degrading bacterial and fungal species and regenerative capability of chloragogen cells in the intestine. The results suggested that reduced microbial populations and pathological damages in intestine were observed during the application of monocrotophos. So, the monocrotophos have several harmful impacts on earthworms.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Monocrotofós/farmacologia , Oligoquetos/microbiologia , Praguicidas/farmacologia , Animais , Bactérias/efeitos dos fármacos , Carga Bacteriana , Biópsia , Fungos/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos
15.
Photodiagnosis Photodyn Ther ; 28: 1-7, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31374264

RESUMO

The albumen plays a major role in the protection of eggs against microorganisms. It contains an arsenal of natural antimicrobial molecules and antibacterial proteins, including the well-known ovotransferrin and lysozyme, which exert their activities against a range of bacteria. In the present study, the hen's albumen extract treated with the dried insect body of blister beetle M. pustulata was assessed for antibacterial, antibiofilm, anti-inflammatory and anti-proliferative activity. The zone of inhibition against Gram positive E. faecalis and S. aureus was 10.8 mm and 12.1 mm respectively at 100 µg mL-1. However, it was 13.6 mm and 15.3 mm for Gram negative P. aeruginosa and P. vulgaris respectively. The biofilm of tested bacteria was significantly inhibited at 100 µg mL-1. The hydrophobicity of bacterial biofilms was considerably condensed after treatment with the hen's albumen extracts at 100 µg mL-1. The anti-inflammatory activity of hen's albumen extracts was confirmed by the inhibition of cyclooxygenase (COX) enzyme to 84.91% at 100 µg mL-1 with the relative IC50 of 8.26 µg mL-1. The albumen extract effectively inhibited the viability (23.61%) of HepG2 hepatic cancer cells at 100 µg mL-1. The anti-proliferative activity of the albumen extracts was further revealed by the induction of HepG2 apoptotic cell morphology. This study concludes that the hen's albumen extract treated with M. pustulata is a natural therapeutic agent to treat biofilm associated clinical bacteria, inflammations and human hepatic cancer cells.


Assuntos
Albuminas/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Biofilmes/efeitos dos fármacos , Fotoquimioterapia/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Besouros , Feminino , Células Hep G2/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
16.
J Trace Elem Med Biol ; 51: 191-203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30466931

RESUMO

Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 µg/ml = 4.0 mm, 75 µg/ml = 7.2 mm) and E. faecalis (50 µg/ml = 3.1 mm, 75 µg/ml = 5.1 mm), over P. aeruginosa (50 µg/ml = 2.1 mm, 75 µg/ml = 4.8 mm), E. coli (50 µg/ml = 1.3 mm, 75 µg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 µg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 µg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Encefalite Japonesa/tratamento farmacológico , Mosquitos Vetores/efeitos dos fármacos , Nanofios/química , Selênio/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Braquiúros , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Selênio/química , Staphylococcus aureus/efeitos dos fármacos
17.
Mater Sci Eng C Mater Biol Appl ; 90: 589-601, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853129

RESUMO

Nanomaterial-based drug carriers have become a hot spot of research at the interface of nanotechnology and biomedicine because they allow efficient loading, targeted delivery, controlled release of drugs, and therefore are promising for biomedical applications. The current study made an attempt to decorate the multiwalled carbon nanotubes (MWCNT) with titanium dioxide­gold nanoparticles in order to enhance the biocompatibility for doxorubicin (DOX) delivery. The successful synthesis of nano drug carrier (NDC) was confirmed by XRD, XPS and UV-Visible spectroscopy. FESEM and TEM revealed that the morphology of NDC can be controlled by manipulating the reaction duration, MWCNT concentration and TiO2-Au source concentration. Results showed that TiO2 and Au nanoparticles were well coated on MWCNT. NDC had finely tuned biocompatible properties, as elucidated by hemolytic and antimicrobial assays. NDC also showed a high antioxidant potential, 80.7% expressed as ascorbic acid equivalents. Commercial DOX drug was utilized to treat A549 and MCF7 cancer cell lines showing improved efficiency by formulating it with NDC, which selectively delivered at the pH 5.5 with drug loading capacity of 0.45 mg/mL. The drug releasing capacity achieved by NDC was 90.66% for 10 h, a performance that far encompasses a wide number of current literature reports.


Assuntos
Portadores de Fármacos/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Titânio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos
18.
Int J Biol Macromol ; 113: 996-1007, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524494

RESUMO

Prophenoloxidase is a conserved Cu-containing enzyme acting as a major defense molecule in the immune response of crustaceans. In the present research, we purified prophenoloxidase from the haemolymph of Portunus pelagicus (Pp-proPO) by Blue Sepharose CL-6B chromatography. Pp-proPO exhibited only one band with molecular weight of 75kDa on SDS-PAGE. The purified Pp-proPO was characterized through X-ray diffraction (XRD) and high-performance liquid chromatography (HPLC). Pp-proPO showed phagocytic activity on the yeast Saccharomyces cerevisiae as well as encapsulation on sepharose CL-6B beads associated with CM sepharose and beads of sodium alginate. Pp-proPO also led to strong agglutination on human erythrocytes. Furthermore, Pp-proPO showed magnified PO activity when altered with activated particles acting as pathogen combined molecular patterns (PAMPs), metal ions or other chemicals. Pp-proPO showed relevant antibiofilm activity on Gram negative bacteria Pseudomonas aeruginosa and Escherichia coli. Overall, the above results allowed us to claim that Pp-proPO play a key role in immune defense mechanisms of P. pelagicus crabs, in particular towards microbial pathogens; notably we added basic information to the functional characterization of Pp-proPO, as well as to understand its immunological role in crustaceans defense systems.


Assuntos
Biofilmes/efeitos dos fármacos , Braquiúros/imunologia , Catecol Oxidase/imunologia , Catecol Oxidase/farmacologia , Precursores Enzimáticos/imunologia , Precursores Enzimáticos/farmacologia , Animais , Biofilmes/crescimento & desenvolvimento , Braquiúros/enzimologia , Catecol Oxidase/química , Precursores Enzimáticos/química , Hemaglutinação , Interações Hidrofóbicas e Hidrofílicas , Fagocitose
19.
Environ Sci Pollut Res Int ; 25(11): 10555-10566, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372518

RESUMO

The eco-friendly management of mosquitoes with novel and effective larvicides and oviposition deterrents is a crucial challenge to prevent outbreaks of mosquito-borne diseases. However, most of the herbal formulations tested in these years showed LC50 values higher of 40 ppm, and significant oviposition deterrent activity only when tested at relatively higher doses (> 50 µg/ml). Herein, we studied the chemical composition of the Galinsoga parviflora essential oil (EO). This plant is an annual herb native to South America naturalized all over the world. We tested the EO larvicidal and oviposition deterrent action on 6 mosquito species. Totally 37 compounds were identified in the EO of G. parviflora by GC and GC-MS analyses. The major constituent was (Z)-γ-bisabolene (38.9%). The G. parviflora EO and (Z)-γ-bisabolene showed acute toxicity on An. stephensi (LC50 = 31.04 and 2.04 µg/ml, respectively), Ae. aegypti (LC50 = 34.22 and 2.26 µg/ml, respectively), Cx. quinquefasciatus (LC50 = 37.10 and 2.47 µg/ml, respectively), An. subpictus (LC50 = 40.97 and 4.09 µg/ml, respectively), Ae. albopictus (LC50 = 45.55 and 4.50 µg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 49.56 and 4.87 µg/ml, respectively) larvae. Furthermore, the oviposition deterrent potential of the G. parviflora EO and (Z)-γ-bisabolene was studied on six mosquito vectors, showing that 25 µg/ml of (Z)-γ-bisabolene led to an Oviposition Activity Index lower of - 0.79 in all tested mosquito vectors. Overall, all larvicidal LC50 values estimated for (Z)-γ-bisabolene were lower than 5 µg/ml. This result far encompasses current evidences of toxicity reported for the large majority of botanical products currently tested against mosquito young instars, allowing us to propose this compound as an highly effective mosquito larvicide and oviposition deterrent.


Assuntos
Asteraceae/efeitos dos fármacos , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/análise , Inseticidas/química , Mosquitos Vetores/química , Óleos Voláteis/química , Sesquiterpenos , América do Sul
20.
Ecotoxicol Environ Saf ; 148: 781-786, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29190597

RESUMO

The fast-growing resistance development to several synthetic and microbial insecticides currently marketed highlighted the pressing need to develop novel and eco-friendly pesticides. Among the latter, botanical ones are attracting high research interest due to their multiple mechanisms of action and reduced toxicity on non-target vertebrates. Helicoverpa armigera (Lepidoptera: Noctuidae) is a key polyphagous insect pest showing insecticide resistance to several synthetic molecules used for its control. Therefore, here we focused on the rhizome essential oil extracted from an overlooked Asian plant species, Cheilocostus speciosus (J. Konig) C. Specht (Costaceae), as a source of compounds showing ingestion toxicity against H. armigera third instar larvae, as well as ovicidal toxicity. In acute larvicidal assays conducted after 24h, the C. speciosus essential oil achieved a LC50 value of 207.45µg/ml. GC and GC-MS analyses highlighted the presence of zerumbone (38.6%), α-humulene (14.5%) and camphene (9.3%) as the major compounds of the oil. Ingestion toxicity tests carried out testing these pure molecules showed LC50 values of 10.64, 17.16 and 20.86µg/ml, for camphene, zerumbone and α-humulene, respectively. Moreover, EC50 values calculated on H. armigera eggs were 35.39, 59.51 and 77.10µg/ml for camphene, zerumbone and α-humulene, respectively. Overall, this study represents the first report on the toxicity of C. speciosus essential oil against insect pests of agricultural and medical veterinary importance, highlighting that camphene, zerumbone and α-humulene have a promising potential as eco-friendly botanical insecticides.


Assuntos
Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Rizoma/química , Sesquiterpenos/farmacologia , Terpenos/farmacologia , Zingiberales/química , Animais , Monoterpenos Bicíclicos , Índia , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Lepidópteros/crescimento & desenvolvimento , Sesquiterpenos Monocíclicos , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Sesquiterpenos/isolamento & purificação , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA