Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564910

RESUMO

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Assuntos
Antineoplásicos , Eletrodos , Grafite , Compostos de Nitrogênio , Sulfetos , Ondas Ultrassônicas , Compostos de Zinco , Compostos de Zinco/química , Sulfetos/química , Antineoplásicos/química , Grafite/química , Flutamida/análise , Flutamida/química , Técnicas Eletroquímicas/métodos , Técnicas de Química Sintética , Eletroquímica , Limite de Detecção , Catálise , Nanocompostos/química , Nanoestruturas/química
2.
Environ Res ; 238(Pt 2): 117193, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758116

RESUMO

Carbaryl and carbofuran are the carbamate pesticides which have been widely used worldwide to control insects in crops and house. If the pesticides entered in to the food products and drinking water, they could cause serious health effects in humans. Therefore, the development of a rapid, simple, sensitive and selective analytical device for on-site detection of carbamates is crucial to evaluate food and environmental samples. Recently, semiconducting single-walled carbon nanotube-based field effect transistors (s-SWCNT/FETs) have shown several advantages such as high carrier mobility, good on/off ratio, quasi ballistic electron transport, label-free detection and real-time response. Herein, cobalt ferrite (CFO) nanoparticles decorated s-SWCNTs have been prepared and used to bridge the source and drain electrodes. As-prepared CFO/s-SWCNT/FET had been used for the non-enzymatic detection of carbaryl and carbofuran. When used as a sensing platform, the CFO/s-SWCNT hybrid film exhibited high sensitivity, and selectivity with a wide linear range of detection from 10 to 100 fMand the lowest limit of detections for carbaryl (0.11 fM) and carbofuran (0.07 fM) were estimated. This sensor was also used to detect carbaryl in tomato and cabbage samples, which confirmed its practical acceptance. Such performance may be attributed to the oxidation of carbamates by potent catalytic activity of CFO, which led to the changes in the charge transfer reaction on the s-SWCNTs/FET conduction channel. This work presents a novel CFO/s-SWCNT based sensing system which could be used to quantify pesticide residues in food samples.


Assuntos
Carbofurano , Nanotubos de Carbono , Praguicidas , Humanos , Carbaril , Nanotubos de Carbono/química , Carbamatos
3.
ACS Omega ; 8(12): 10954-10967, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008090

RESUMO

In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 µg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.

4.
Mikrochim Acta ; 189(10): 374, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068328

RESUMO

A chemiresistive biosensor is described for simple and selective detection of miRNA-21. We developed chemical vapor deposition (CVD) and low-damage plasma treatment (LDPT)-treated bilayer graphene composite of graphene oxide/graphene (GO/GR) for the determination of a reliable biomarker. We have successfully overcome the self-limiting growth mechanism by using CVD method to grow more than one layer of graphene on copper foil. In addition, LDPT can be used to form GO/GR structures for chemiresistive biosensor applications. Due to the direct formation of BLGR (bilayer graphene), the coupling between graphene layers is theoretically superior to that of stacked BLGR, which is also confirmed by the blue shift of the characteristic peak of graphene in Raman spectroscopy. The shift is about double compared with that of stacked BLGR. Based on the results, the limit of detection for the target miRNA-21 was calculated to be 5.20 fM and detection rage is calculated as 100 fM to 10 nM, which is obviously better performance. Compared with previous work, this chemiresistive biosensor has good selectivity, and stability towards detection of miRNA-21. The ability to detect miRNA-21 in different biological fluids was almost identical to that in pH 7.4 phosphate-buffered saline (PBS). Thus, the proposed bilayer GO/GR of modified chemiresistive biosensor may potentially be applied to detect cancer cells in clinical examinations.


Assuntos
Técnicas Biossensoriais , Grafite , MicroRNAs , Neoplasias , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Gases/química , Grafite/química , Neoplasias/diagnóstico
5.
Anal Chim Acta ; 1137: 181-190, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153601

RESUMO

This work proposes the conventional sonochemical synthesis of nanoparticles of tin (IV) oxide on reduced graphene oxide (rGOS@SnO2) influencing the formation of a composite with enhanced properties. The combination of SnO2 nanoparticles with rGOS weakens the accumulation in layered structures of the latter system, which leads to better exposure of SnO2 active sites and thus increases the conductivity of rGOS@SnO2 composite. This validates the improved electro-catalytic activity of the composite based on previous reports for its successful utilization in the electrochemical determination of toxic contaminants. The quantitative determination of mercury ions, through the use of the electrochemical sensor based on rGOS@SnO2 manifests several advantages such as simple operator, promptness, cost effectiveness and time independency when compared to other traditional techniques. The fabricated sensor displays two wide linear responses in the range of 0.25-705.3 µM for mercury ions, with a rapid response time about 1 s, and with a high sensitivity of 10.18 µA µM-1 cm-2 under optimized conditions. The accumulation of traces of mercury in the bodies of fish in the marine eco system marks the significance of its detection in real samples. The satisfactory results of the proposed sensor establish the supreme efficacy of layered nanomaterials in conjunction with nanoparticles for the simple, rapid and efficient detection of pollutants in food and biological samples.


Assuntos
Grafite , Mercúrio , Nanopartículas , Neoplasias , Animais , Eletrodos , Humanos , Sustento , Compostos de Estanho
6.
Ultrason Sonochem ; 58: 104622, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450347

RESUMO

To explore a novel and multi-layer based graphene oxide covered zinc oxide nanoflower (ZnO NFs@GOS) as a modified electrode materials by sonochemical technique (40 kHz, 300 W). Herein, novel nanocomposite is successfully characterized by various characterization analysis (FESEM, HRTEM, XRD, XPS and (EIS) electrochemical impedance spectroscopy) and employed as high sensitive modified electrode (ZnO NFs@GOS nanocomposite) for the electrochemical determination of biomarker. 8-hydroxy-2'-deoxyguanosine (8-HDG) is one of the important cancer and oxidative stress biomarker. The results demonstrated that the ZnO NFs@GOS modified SPCE reveal well-defined electro-oxidation peak at 0.36 V (vs. Ag/AgCl). The high sensitive properties of the optimized flower like modified electrode are because of the excellent synergistic effect of the ZnO flower and the graphene oxide nanosheets, as evidenced by a superior bio-sensing performance. The nanocomposite fabricated modified biosensor was facilitating the analysis of 8-HDG in the concentration ranges of 0.05-536.5 µM with a low detection limit is 8.67 nM. The ZnO NFs@GOS modified sensor can also employed for the determination of 8-HDG in human urine samples, promising its application towards the quantification of cancer biomarker in biological samples.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/urina , Dano ao DNA , Eletroquímica/instrumentação , Grafite/química , Ondas Ultrassônicas , Urinálise/instrumentação , Óxido de Zinco/química , 8-Hidroxi-2'-Desoxiguanosina/química , Biomarcadores/química , Biomarcadores/urina , Catálise , Eletrodos , Limite de Detecção
7.
Mikrochim Acta ; 185(11): 520, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367266

RESUMO

A voltammetric sensor is described for the quantitation of propyl gallate (PG). A screen-printed carbon electrode (SPCE) was modified with reduced graphene sheets that were decorated with cobalt diselenide nanoparticles (CoSe2@rGO). The material was hydrothermally prepared and characterized by several spectroscopic techniques. The modified SPCE displays excellent electrocatalytic ability towards PG. Differential pulse voltammetry, with a peak voltage at 0.34 V (vs. Ag/AgCl) has a sensitivity of 12.84 µA·µM-1·cm-2 and a detection limit as low as 16 nM. The method is reproducible, selective, and practical. This method was applied to the determination of PG in spiked meat samples, and the result showed an adequate recovery. Graphical abstract Schematic of a new method for fast and sensitive electrochemical determination of the food additive propyl gallate in meat.


Assuntos
Cobalto/química , Técnicas Eletroquímicas/métodos , Carne/análise , Galato de Propila/análise , Selênio/química , Antioxidantes/análise , Técnicas Eletroquímicas/normas , Eletrodos , Aditivos Alimentares/análise , Grafite/química , Limite de Detecção , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA