Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 374: 66-73, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978632

RESUMO

Intensive use of atrazine in agriculture to increase crop productivity has resulted in pollution and consequently deteriorated the environment. Three isolated bacteria, Rhodococcus sp. BCH2 (RB), Bacillus sp. PDK1 (BP1) and Bacillus sp. PDK2 (BP2) possessing capability to degrade atrazine were used in different combinations (RB + BP1, RB + BP2, BP1 + BP2, RB + BP1 + BP2) to prepare a highly effective bacterial consortium which can significantly reduce the toxicity of atrazine. Cytotoxicity tests evaluated by MTT assay on HepG2 indicated significant decrease in the toxicity of atrazine by the consortium RB + BP1 + BP2 due to its effective degradation and formation of simpler and less/nontoxic metabolites compared to other combinations of consortia. A microcosm study was conducted to check the survivability of this consortium (RB + BP1 + BP2) in the presence of atrazine and indigenous soil microflora for four weeks. LC-Q-TOF/MS analysis revealed that RB + BP1 + BP2 could degrade atrazine to various simple metabolites in the microcosm. The cluster analysis of the DGGE patterns of the microcosm of control-soil, soil exposed to atrazine and soil augmented with consortium in the presence of atrazine (1000 mg kg-1) revealed a shift in microbial community of soil. The microbial dynamics studies suggested that the augmented bacteria were well-thrived with natural microflora during four weeks of exposure to atrazine.


Assuntos
Atrazina/metabolismo , Atrazina/toxicidade , Biodegradação Ambiental , Agricultura , Bacillus/metabolismo , Análise por Conglomerados , Células Hep G2 , Herbicidas/metabolismo , Herbicidas/toxicidade , Humanos , Microbiota , Filogenia , Rhodococcus/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Bioresour Technol ; 272: 351-359, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384210

RESUMO

Fats, oil and grease (FOG) are energy-dense wastes that substantially increase biomethane recovery. Shifts in the microbial community during anaerobic co-digestion of FOG was assessed to understand relationships between substrate digestion and microbial adaptations. Excessive addition of FOG inhibited the methanogenic activity during initial phase; however, it enhanced the ultimate methane production by 217% compared to the control. The dominance of Proteobacteria was decreased with a simultaneous increase in Firmicutes, Bacteriodetes, Synergistetes and Euryarchaeota during the co-digestion. A significant increase in Syntrophomonas (0.18-11%), Sporanaerobacter (0.14-6%) and Propionispira (0.02-19%) was observed during co-digestion, which substantiated their importance in acetogenesis. Among methanogenic Archaea, the dominance of Methanosaeta (94%) at the beginning of co-digestion was gradually replaced by Methanosarcina (0.52-95%). The absence/relatively low abundance of syntrophic acetate oxidizers and hydrogenotrophic methanogens, and dominance of acetoclastic methanogens suggested that methane generation during co-digestion of FOG was predominantly conducted through acetoclastic pathway led by Methanosarcina.


Assuntos
Gorduras/metabolismo , Metano/biossíntese , Methanosarcina/metabolismo , Óleos/metabolismo , Ácido Acético/metabolismo , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia
3.
Ecotoxicol Environ Saf ; 161: 70-77, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859410

RESUMO

This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L-1) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d.


Assuntos
Asparagus/enzimologia , Compostos Azo/metabolismo , Corantes/metabolismo , Recuperação e Remediação Ambiental/métodos , Nitrilas/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Têxteis , Compostos de Amônio/metabolismo , Compostos de Anilina/metabolismo , Biodegradação Ambiental , Corantes/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Resíduos Industriais , Lacase , Oxirredutases/metabolismo , Peroxidases , Raízes de Plantas/enzimologia , Indústria Têxtil , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
4.
Biotechnol Adv ; 33(8): 1697-714, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386310

RESUMO

Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella, Typha domingensis, Pogonatherum crinitum and Alternanthera philoxeroides. The developed phytoreactors gave noteworthy treatments, and significant reductions in biological oxygen demand, chemical oxygen demand, American Dye Manufacturers Institute color removal value, total organic carbon, total dissolved solids, total suspended solids, turbidity and conductivity of the dye effluents after phytoremediation. Metabolites of dyes and effluents have been assayed for phytotoxicity, cytotoxicity, genotoxicity and animal toxicity and were proved to be non/less toxic than untreated compounds. Effective strategies to handle fluctuating dye load and hydraulics for in situ treatment needs scientific attention. Future studies on development of transgenic plants for efficacious phytodegradation of textile dyes should be focused.


Assuntos
Asteraceae/química , Biodegradação Ambiental , Corantes/química , Poaceae/química , Rheum/química , Asteraceae/enzimologia , Compostos Azo/química , Benzenossulfonatos/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lacase/química , Peroxidases/química , Poaceae/enzimologia , Rheum/enzimologia , Indústria Têxtil
5.
Environ Sci Pollut Res Int ; 19(5): 1709-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22161298

RESUMO

PURPOSE: Phytoremediation is the exploitation of plants and their rhizospheric microorganisms for pollutants treatment like textile dyes, which are toxic, carcinogenic and mutagenic from the effluent. The purpose of this work was to explore a naturally found plant and bacterial synergism to achieve an enhanced degradation of Remazol Black B dye (RBB). METHODS: In vitro cultures of Zinnia angustifolia were obtained by seed culture method. Enzymatic analysis of the plant roots and Exiguobacterium aestuarii strain ZaK cells was performed before and after decolorization of RBB. Metabolites of RBB formed after its degradation were analyzed using UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS). Phytotoxicity studies were performed. RESULTS: The consortium ZE was found to be more efficient than individual plant and bacteria. Z. angustifolia roots showed significant induction in the activities of lignin peroxidase, laccase, DCIP reductase and tyrosinase during dye decolorization. E. aestuarii showed significant induction in the activities of veratryl alcohol oxidase, azo reductase and DCIP reductase. Analysis of metabolites revealed differential metabolism of RBB by plant, bacteria and consortium ZE. E. aestuarii and Z. angustifolia led to the formation of 3,6-diamino-4-hydroxynaphthalene-2-sulfonic acid, (ethylsulfonyl)benzene, and 3,4,6-trihydroxynaphthalene-2-sulfonic acid and propane-1-sulfonic acid, respectively, whereas consortium ZE produced 4-hydroxynaphthalene-2-sulfonic acid, naphthalene-2-sulfonic acid and 4-(methylsulfonyl)phenol. The phytotoxicity study revealed the nontoxic nature of the metabolites formed after dye degradation. CONCLUSION: Consortium ZE was found to be more efficient and faster in the degradation of RBB when compared to degradation by Z. angustifoila and E. aestuarii individually.


Assuntos
Asteraceae/metabolismo , Asteraceae/microbiologia , Bacillales/isolamento & purificação , Biodegradação Ambiental , Naftalenossulfonatos/metabolismo , Naftalenossulfonatos/toxicidade , Poluentes Químicos da Água/metabolismo , Asteraceae/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Enzimas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Lacase/metabolismo , Filogenia , Espectroscopia de Infravermelho com Transformada de Fourier , Simbiose , Indústria Têxtil , Testes de Toxicidade
6.
Indian J Clin Biochem ; 27(2): 134-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23543683

RESUMO

The aim of this study was to see the biochemical effects of pesticides on sprayers of grape gardens before and after 15 days of vitamin E supplementations in Western Maharashtra (India), who were occupationally exposed to various pesticides over a long period of time (about 5 to 15 years). Blood samples were collected from all study group subjects for biochemical parameters assays before and after 15 days of vitamin E supplementation. Sprayers of grape gardens were given 400 mg of vitamin E tablet/day for 15 days. After 15 days of vitamin E supplementation to sprayers of grape gardens, we observed significantly decreased aspartate transaminase (10.88 %, P < 0.05, r = 0.88), alanine transaminase (25.92 %, P < 0.01, r = 0.46) and total proteins (3.32 %, P < 0.01, r = 0.33), whereas, no statistically significant change was found in serum acetyl cholinesterase, C-reactive proteins, albumin (ALB), globulins and ALB/globulin ratio as compared to before vitamin E supplementation. Sprayers of grape gardens, who received vitamin E supplementation, showed significantly decreased serum lipid peroxide (LP) (18.75 %, P < 0.001, r = 0.63) and significantly increased RBC-superoxide dismutase (SOD) (12.88 %, P < 0.001, r = 0.85), RBC-Catalase (CAT) (24.49 %, P < 0.001, r = 0.70), plasma ceruloplasmin (CP) (4.6 %, P < 0.01, r = 0.80), serum zinc (4.57 %, P < 0.01, r = 0.83) and serum copper (4.37 %, P < 0.01, r = 0.79) as compared to values before vitamin E supplementation. These results showed that vitamin E supplementation has ameliorating effects on these transaminase enzymes, suggesting that it may have a protective effect on liver, from pesticides induced damage. In this study vitamin E supplementation might have decreased LP levels by breaking chain reaction of lipid peroxidation. Present results indicate that vitamin E plays a crucial role in restoring the antioxidant enzymes such as SOD, CAT and CP, in population exposed to pesticides. This helps to enhance its antioxidant ability. Therefore, it is suggested that farmers, pesticide applicators, workers in the pesticide industry and other pesticide users, who come in regular contact with pesticides, may be benefited by supplementation with vitamin E.

7.
Planta ; 234(6): 1137-49, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21735196

RESUMO

In vitro transgenic hairy root cultures provide a rapid system for physiological, biochemical studies and screening of plants for their phytoremediation potential. The hairy root cultures of Brassica juncea L. showed 92% decolorization of Methyl orange within 4 days. Out of the different redox mediators that were used to achieve enhanced decolorization, 2, 2'-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was found to be the most efficient. Laccase activity of 4.5 U mg(-1) of protein was observed in hairy root cultures of Brassica juncea L., after the decolorization of Methyl orange. Intracellular laccase produced by B. juncea root cultures grown in MS basal medium was purified up to 2.0 fold with 6.62 U mg(-1) specific activity using anion-exchange chromatography. Molecular weight of the purified laccase was estimated to be 148 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme efficiently oxidized ABTS which was also required for oxidation of the other tested substrates. The pH and temperature optimum for laccase activity were 4.0 and 40°C, respectively. The purified enzyme was stable up to 50°C and was stable in the pH range of 4.0-6.0. Laccase activity was strongly inhibited by sodium azide, EDTA, dithiothreitol and L: -cysteine. The purified enzyme decolorized various textile dyes in the presence of ABTS as an efficient redox mediator. These findings contribute to a better understanding of the enzymatic process involved in phytoremediation of textile dyes by using hairy roots.


Assuntos
Benzotiazóis/farmacologia , Brassica/enzimologia , Corantes/metabolismo , Lacase/metabolismo , Proteínas de Plantas/metabolismo , Ácidos Sulfônicos/farmacologia , Compostos Azo/metabolismo , Biodegradação Ambiental , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Cor , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Resíduos Industriais , Espaço Intracelular/enzimologia , Cinética , Lacase/antagonistas & inibidores , Lacase/efeitos dos fármacos , Lacase/isolamento & purificação , Peso Molecular , Oxirredução , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/enzimologia , Especificidade por Substrato , Temperatura , Têxteis
8.
Int J Phytoremediation ; 13(4): 357-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21598798

RESUMO

Polyphenol oxidase (PPO) purified using DEAE-cellulose and Biogel P-100 column chromatography from banana pulp showed 12.72-fold activity and 2.49% yield. The optimum temperature and pH were found to be 30 degrees C and 7.0, respectively for its activity. Catechol was found to be a suitable substrate for banana pulp PPO that showed V(max), 0.041 mM min(-1) and K(m), 1.6 mM. The enzyme activity was inhibited by sodium metabisulfite, citric acid, cysteine, and beta-mercaptoethanol at 10 mM concentration. The purified enzyme could decolorize (90%) Direct Red 5B (160 microg mL(-1)) dye within 48 h and Direct Blue GLL (400 microg mL(-1)) dye up to 85% within 90 h. The GC-MS analysis indicated the presence of 4-hydroxy-benzenesulfonic acid and Naphthalene-1,2,3,6-tetraol in the degradation products of Direct Red 5B, and 5-(4-Diazenyl-naphthalene-1-ylazo)-8-hydroxy-naphthalene-2-sulfonic acid and 2-(4-Diazenyl-naphthalene-1-ylazo)-benzenesulfonic acid in the degradation products of Direct Blue GLL.


Assuntos
Catecol Oxidase/metabolismo , Corantes/metabolismo , Musa/enzimologia , Catecol Oxidase/química , Catecol Oxidase/isolamento & purificação , Catecóis/metabolismo , Cromatografia DEAE-Celulose , Cromatografia em Gel , Corantes/química , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Musa/metabolismo , Espectrofotometria , Especificidade por Substrato , Temperatura , Têxteis , Fatores de Tempo
9.
Environ Sci Pollut Res Int ; 18(8): 1360-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21465161

RESUMO

PURPOSE: The dyes and dye stuffs present in effluents released from textile dyeing industries are potentially mutagenic and carcinogenic. Phytoremediation technology can be used for remediating sites contaminated with such textile dyeing effluents. The purpose of the work was to explore the potential of Glandularia pulchella (Sweet) Tronc. to decolorize different textile dyes, textile dyeing effluent, and synthetic mixture of dyes. METHODS: Enzymatic analysis of the plant roots was performed before and after decolorization of dye Green HE4B. Analysis of the metabolites of Green HE4B degradation was done using UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectroscopy (GC-MS). The ability of the plant to decolorize and detoxify a textile dyeing effluent and a synthetic mixture of dyes was studied by a determination of the American Dye Manufacturer's Institute (ADMI), biological oxygen demand (BOD), and chemical oxygen demand (COD). Phytotoxicity studies were performed. RESULT: Induction of the activities of lignin peroxidase, laccase, tyrosinase, and 2,6-dichlorophenol indophenol reductase was obtained, suggesting their involvement in the dye degradation. UV-Vis spectroscopy, HPLC, and FTIR analysis confirmed the degradation of the dye. Three metabolites of the dye degradation were identified, namely, 1-(4-methylphenyl)-2-{7-[(Z)-phenyldiazenyl] naphthalen-2-yl} diazene; 7,8-diamino-2-(phenyldiazenyl) naphthalen-1-ol; and (Z)-1,1'-naphthalene-2,7-diylbis (phenyldiazene) using GC-MS. ADMI, BOD, and COD values were reduced. The non-toxic nature of the metabolites of Green HE4B degradation was revealed by phytotoxicity studies. CONCLUSION: This study explored the phytoremediation ability of G. pulchella (Sweet) Tronc. in degrading Green HE4B into non-toxic metabolites.


Assuntos
Compostos Azo/metabolismo , Verbena/metabolismo , Compostos Azo/química , Compostos Azo/toxicidade , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil , Verbena/efeitos dos fármacos , Verbena/enzimologia
10.
Bioresour Technol ; 102(2): 1752-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855194

RESUMO

Bacillus sp. ADR secretes an extracellular laccase in nutrient broth, and this enzyme was purified up to 56-fold using acetone precipitation and DEAE-cellulose anion exchange chromatography. The molecular weight of purified laccase was estimated to be 66 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified laccase oxidized 2,6-dimethoxy phenol, o-tolidine, hydroquinone, L-DOPA and guaiacol. The optimum pH for oxidation of o-tolidine, 2,6-dimethoxy phenol and guaiacol were 3.0, 4.0 and 5.0, respectively. The purified laccase contained 2.7 mol/mol of copper. The laccase was stable up to 40 °C and within the pH range of 7.0-9.0. Well-known inhibitors of multicopper oxidases such as, sodium azide, L-cysteine and dithiothreitol showed significant inhibition of laccase activity. The purified enzyme decolorized structurally different azo dyes with variable decolorization rates and efficiencies of 68-90%. This study is useful for understanding the precise use of Bacillus sp. ADR in the decolorization of textile dyes containing industrial wastewater.


Assuntos
Bacillus/enzimologia , Corantes/metabolismo , Espaço Extracelular/enzimologia , Resíduos Industriais/análise , Lacase/isolamento & purificação , Indústria Têxtil , Bacillus/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Cor , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Lacase/antagonistas & inibidores , Lacase/metabolismo , Metais/farmacologia , Oxirredução/efeitos dos fármacos , Sais/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Temperatura
11.
J Sci Food Agric ; 90(4): 608-14, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20355088

RESUMO

BACKGROUND: Aflatoxin contamination of various commodities can occur as a result of infection, mainly by Aspergillus flavus and Aspergillus parasiticus. Every year, almost 25% of the world's food supply is contaminated by mycotoxins. Aflatoxins B(1), B(2), G(1) and G(2), which occur naturally, are significant contaminants of a wide variety of commodities. A number of biological activities have been associated with Ageratum conyzoides. We have therefore investigated the antiaflatoxigenic, antioxidant and antimicrobial activity of essential oils of A. conyzoides. This could help to turn A. conyzoides, a nuisance weed, into a resource. RESULTS: The essential oil of Ageratum conyzoides L. shows the presence of 12 compounds when analyzed by gas chromatography-mass spectrometry. The growth and aflatoxin production of the toxigenic strain Aspergillus parasiticus was completely inhibited by essential oil. All the studied concentrations of the oil demonstrate a reduction in mycelia growth and decreased production of different aflatoxins in fungi, as revealed by liquid chomatographic-tandem mass spectrometric analysis. Volatiles from macerated green leaf tissue of A. conyzoides were also effective against A. parasiticus. The strongest antibacterial activity was observed against the bacteria Staphylococcus aureus and Bacillus subtilis in a disk diffusion bioassay. Essential oil and methanol extract of A. conyzoides L. were assayed for their antioxidant activity. Methanol extract showed the highest antioxidant activity in FRAP and DPPH assay, whereas essential oil showed greater lipid peroxidation inhibition than methanol extract. CONCLUSION: The plant's ethno-medicinal importance, antioxidant potential, inhibitory activity against the Aspergillus group of fungi and production of aflatoxins may add a new dimension to its usefulness in the protection of stored product.


Assuntos
Aflatoxinas/biossíntese , Ageratum/química , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Aspergillus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antioxidantes/química , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Bacillus/efeitos dos fármacos , Cromatografia Líquida , Microbiologia de Alimentos , Micélio/efeitos dos fármacos , Óleos Voláteis/química , Extratos Vegetais/química , Folhas de Planta , Espectrometria de Massas em Tandem
12.
J Basic Clin Physiol Pharmacol ; 20(4): 335-55, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20214020

RESUMO

We compared hematologic parameters and liver and kidney function tests in occupationally exposed pesticide sprayers of grape gardens (n = 60) and normal healthy participants (n = 30), 20-45 years of age, in Western Maharashtra (India). Venous blood samples were collected from both groups. Compared with control participants, sprayers showed the following-significantly increased serum C reactive protein (117.6%), liver function marker enzymes-serum aspartate transaminase (57%), alanine transaminase (37.4%), alkaline phosphatase (16.9%), serum bilirubin (41.8%), creatinine (18.4%), blood glucose (11.4%), and urea (13.%); and decreased acetyl cholinesterase activity (30.9%) and serum cholesterol (12.12%). Serum total protein, globulin, and the A/G ratio were not significantly altered, however, but serum albumin decreased slightly (3.3%, P <.05). Compared with the control group, hematologic parameters significantly decreased in sprayers-hemoglobin (6.9%), hematocrit (3%), mean corpuscular volume (3.8%), mean corpuscular hemoglobin (4.5%), mean corpuscular hemoglobin concentration (5.8%), and red blood cell count (7.7%), whereas the white blood cell count increased (18.2%). The decreased serum acetyl cholinesterase value indicates a high degree of pesticides absorption, which leads to impairment of liver and kidney functions and slightly altered hematologic parameters in the occupationally exposed pesticides sprayers of grape gardens studied here.


Assuntos
Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Praguicidas/toxicidade , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Glicemia/análise , Proteína C-Reativa/análise , Hemoglobinas/análise , Humanos , Rim/fisiologia , Fígado/fisiologia , Masculino , Pessoa de Meia-Idade , Vitis
13.
Indian J Clin Biochem ; 18(2): 16-22, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23105387

RESUMO

A total of 85 healthy male pesticide sprayers in grape garden exposed to different class of pesticides for 3 to 10 years were compared with 75 controls matched for age with respect to serum cholinesterase, serum total protein, albumin, AST, ALT, hematological parameters such as Hb, Hct, RBC and serum lipid peroxidation. Serum lipid peroxidation was estimated in the form of thiobarbituric acid reactive substances (TBARS) produced. Significant decrease was observed in serum cholinesterase, serum total proteins, albumin and hematological parameters viz. Hb, Hct and RBC. Significant increase in lipid peroxidation, AST, ALT, was observed in exposed group when compared with control. These results suggest that the long term exposure of various pesticides on sprayers of grape garden affect liver, heme biosynthesis and decrease serum cholinesterase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA