Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biology (Basel) ; 13(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39056711

RESUMO

The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer's disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aß). Toxic Aß oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain. In the present study, we investigated the effects of Hup A on amyloid precursor protein (APP) proteolysis in SH-SY5Y neuroblastoma cells. Hup A downregulated the expression of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) levels but augmented the levels of A disintegrin and metalloproteinase 10 (ADAM10) with significant decrement in the Aß levels. We herein report for the first time an in silico molecular docking analysis that revealed that Hup A binds to the functionally active site of BACE1. We further analyzed the effect of Hup A on glycogen synthase kinase-3 ß (GSK3ß) and phosphorylation status of tau. In this scenario, based on the current observations, we propose that Hup A is a potent regulator of APP processing and capable of modulating tau homeostasis under physiological conditions holding immense potential in preventing and treating AD like disorders.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791263

RESUMO

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Melatonina , Neuroblastoma , Melatonina/farmacologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glucose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia/metabolismo
3.
J Biochem ; 176(2): 139-153, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38669682

RESUMO

Analogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation. Intriguingly, acute AzaD treatment promoted the phosphorylation of GCN2, a kinase that transduces the integrated stress response (ISR), and prolonged exposure to AzaD could increase the levels of the phosphorylated forms of eIF2α and the other ISR kinase protein kinase R (PKR). However, the effects of AzaD on ISR signalling were marginally abrogated in cells with genetic deletion of GCN2 and PKR, and evaluation of protein target engagement by cellular thermal shift assay (CETSA) revealed no significant interaction between AzaD and ISR kinases. Further investigation revealed that acute AzaD treatment negatively affected mechanistic target of rapamycin (mTOR) phosphorylation and signalling. The analyses by CETSA and computational modelling indicated that mTOR may be a possible protein target for AzaD. These findings indicate the potential for developing lamellarins as novel agents for cancer treatment.


Assuntos
Biossíntese de Proteínas , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Células HeLa , Biossíntese de Proteínas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases
4.
Sci Rep ; 13(1): 17841, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857668

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. In addition to amyloid beta (Aß) and tau, neuroinflammation is a crucial element in the etiology of this disease. However, the relevance of inflammasome-induced pyroptosis to AD is unknown. We aimed to clarify whether the anti-inflammatory effects of melatonin could prevent Aß-mediated activation of the inflammasome. We demonstrated that Aß upregulated NOD-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD, and cysteinyl aspartate-specific proteinase caspase (caspase 1) expression in SH-SY5Y neuroblastoma cells, resulting in the release of proinflammatory cytokines, including interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumor necrosis factor (TNF-α). Melatonin prevented inflammasome signaling and excessive cytokine release caused by Aß. We found that ethyl 2[(2-chlorophenyl)(hydroxy) methyl]acrylate (INF-4E, NLRP3 and caspase 1 inhibitor) significantly abolished Aß-induced proinflammatory cytokine expression. The increase in cleaved-caspase 1, pro-IL18, and cleaved-IL18 caused by Aß suggested the occurrence of pyroptosis, which was further confirmed by the increased expression of N-terminal gasdermin D (N-GSDMD). Melatonin plays a protective role against Aß-induced inflammation via an inflammasome-associated mechanism that is essential in inducing the active forms of cytokines and pyroptosis. The ability of melatonin to inhibit inflammasome may represent a turning point in the treatment of AD progression.


Assuntos
Doença de Alzheimer , Melatonina , Neuroblastoma , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Peptídeos beta-Amiloides , Melatonina/farmacologia , Caspase 1/metabolismo , Linhagem Celular , Inflamação , Citocinas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Fator de Necrose Tumoral alfa , Interleucina-1beta/metabolismo
5.
Inflammopharmacology ; 31(3): 1481-1493, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017851

RESUMO

Chronic cerebral hypoxia (CCH) is caused by a reduction in cerebral blood flow, and cognitive impairment has been the predominant feature that occurs after CCH. Recent reports have revealed that melatonin is proficient in neurodegenerative diseases. However, the molecular mechanism by which melatonin affects CCH remains uncertain. In this study, we aimed to explore the role and underlying mechanism of melatonin in inflammation and blood‒brain barrier conditions in rats with CCH. Male Wistar rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) to establish the VAD model. Rats were randomly divided into four groups: Sham, BCCAO, BCCAO treated with melatonin (10 mg/kg), and BCCAO treated with resveratrol (20 mg/kg). All drugs were administered once daily for 4 weeks. Our results showed that melatonin attenuated cognitive impairment, as demonstrated by the Morris water maze tests. Furthermore, melatonin reduced the activation of inflammation by attenuating the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (pIκBα), causing the suppression of proteins related to inflammation and inflammasome formation. Moreover, immunohistochemistry revealed that melatonin reduced glial cell activation and proliferation, which were accompanied by Western blotting results. Additionally, melatonin also promoted the expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor-gamma (PPARγ), causing attenuated blood‒brain barrier (BBB) disruption by increasing tight junction proteins. Taken together, our results prove that melatonin treatment modulated inflammation and BBB disruption and improved cognitive function in VaD rats, partly by activating the SIRT1/PGC-1α/PPARγ signaling pathway.


Assuntos
Demência Vascular , Melatonina , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Demência Vascular/tratamento farmacológico , Melatonina/farmacologia , Ratos Wistar , Sirtuína 1/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico
6.
Sci Rep ; 13(1): 6063, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055489

RESUMO

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Melatonina , Neuroblastoma , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Encefalite Japonesa/tratamento farmacológico , Apoptose , Replicação Viral
7.
Protein Expr Purif ; 203: 106212, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481372

RESUMO

Human neuronal cells are a more appropriate cell model for neurological disease studies such as Alzheimer and Parkinson's disease. SH-SY5Y neuroblastoma cells have been widely used for differentiation into a mature neuronal cell phenotype. The cellular differentiation process begins with retinoic acid incubation, followed by incubation with brain-derived neurotrophic factor (BDNF), a recombinant protein produced in E. coli cells. Endotoxin or lipopolysaccharide (LPS) is the major component of the outer membrane of bacterial cells that triggers the activation of pro-inflammatory cytokines and ultimately cell death. Consequently, any endotoxin contamination of the recombinant BDNF used for cell culture experiments would impact on data interpretation. Therefore, in this study, we expressed the BDNF recombinant protein in bacterial endotoxin-free cells that were engineered to modify the oligosaccharide chain of LPS rendering the LPS unable to trigger the immune response of human cells. The expression of DCX and MAP-2 in differentiated cells indicate that in-house and commercial BDNF are equally effective in inducing differentiation. This suggests that our in-house BDNF protein can be used to differentiate SH-SY5Y neuroblastoma cells without the need for an endotoxin removal step.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Engenharia de Proteínas , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Endotoxinas/química , Endotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Neuroblastoma/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Recombinantes/genética , Engenharia de Proteínas/métodos
8.
Neurotox Res ; 40(4): 1086-1095, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35648367

RESUMO

Alzheimer's disease (AD) is the most prominent neurodegenerative disease represented by the loss of memory and cognitive impairment symptoms and is one of the major health imperilments among the elderly. Amyloid (Aß) deposit inside the neuron is one of the characteristic pathological hallmarks of this disease, leading to neuronal cell death. In the amyloidogenic processing, the amyloid precursor protein (APP) is cleaved by beta-secretase and γ-secretase to generate Aß. Methamphetamine (METH) is a psychostimulant drug that causes neurodegeneration and detrimental cognitive deficits. The analogy between the neurotoxic and neurodegenerative profile of METH and AD pathology necessitates an exploration of the underlying molecular mechanisms. In the present study, we found that METH ineluctably affects APP processing, which might contribute to the marked production of Aß in human neuroblastoma cells. Melatonin, an indolamine produced and released by the pineal gland as well as other extrapineal, has been protective against METH-induced neurodegenerative processes, thus rescuing neuronal cell death. However, the precise action of melatonin on METH has yet to be determined. We further propose to investigate the protective properties of melatonin on METH-induced APP-cleaving secretases. Pretreatment with melatonin significantly reversed METH-induced APP-cleaving secretases and Aß production. In addition, pretreatment with luzindole, a melatonin receptor antagonist, significantly prevented the protective effect of melatonin, suggesting that the attenuation of the toxic effect on METH-induced APP processing by melatonin was mediated via melatonin receptor. The present results suggested that melatonin has a beneficial role in preventing Aß generation in a cellular model of METH-induced AD.


Assuntos
Doença de Alzheimer , Melatonina , Metanfetamina , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Melatonina/farmacologia , Neuroblastoma , Doenças Neurodegenerativas , Receptores de Melatonina/metabolismo , Receptores de Melatonina/uso terapêutico
9.
Biochem Pharmacol ; 198: 114980, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219702

RESUMO

Chronic cerebral hypoperfusion (CCH) is the most common cause of cognitive impairment, which is commonly found in Alzheimer's disease (AD) and vascular dementia (VaD). Recently, studies have demonstrated that melatonin is an effective treatment in various neurodegenerative diseases. In this study, we aimed to investigate the effects of melatonin on CCH-induced AD pathology, endoplasmic reticulum (ER) stress, and synaptic plasticity, all of which are correlated with the activation of oxidative stress, apoptosis, and cognitive impairment. CCH was induced in male Wistar rats by bilateral common carotid artery occlusion (2VO). After surgery, rats were treated with melatonin (10 mg/kg) or piracetam (600 mg/kg) by oral gavage once a day for 4 weeks. At the end of the experiment, all rats were assessed for memory impairment by using the Morris water maze test. Subsequently, rats were sacrificed, and brains were removed to determine the levels of beta-amyloid (Aß), malondialdehyde (MDA); the acetylcholinesterase (AChE) activity; subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL); and subjected to western blotting of proteins related to memory, AD pathology, oxidative stress, ER stress, and apoptosis. Melatonin alleviated brain injury during 2VO induction, as revealed by decreased the expression of AD markers, attenuated oxidative stress, suppressed the expression of proteins related to ER stress, apoptosis, and stimulated the expression of the synaptic markers resulting in promoted cognitive function. Therefore, our data demonstrated that melatonin ameliorated cognitive impairment in the 2VO model, and these beneficial effects were associated with reduction in oxidative stress, ER stress, and apoptosis.


Assuntos
Isquemia Encefálica , Melatonina , Acetilcolinesterase , Animais , Isquemia Encefálica/metabolismo , Cognição , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Masculino , Aprendizagem em Labirinto/fisiologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Plasticidade Neuronal , Ratos , Ratos Wistar
10.
J Cell Physiol ; 237(3): 1818-1832, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825376

RESUMO

Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3ß) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3ß and RIP1K activities.


Assuntos
Isquemia Encefálica , Melatonina , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/metabolismo , Gliose/tratamento farmacológico , Gliose/patologia , Glicogênio Sintase Quinase 3 beta , Inflamação , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
11.
Neurochem Res ; 47(9): 2568-2579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33713326

RESUMO

Diabetes mellitus (DM), one of metabolic diseases, has been suggested as a risk factor for Alzheimer's disease (AD). However, how the metabolic pathway activates amyloid precursor protein (APP) processing enzymes then contributes to the increase of amyloid-beta (Aß) production, is not clearly understood. In the present study, we aimed to examine the protective effect of melatonin against hyperglycemia-induced alterations in the amyloidogenic pathway. High concentration of glucose was used to induce hyperglycemia in human neuroblastoma SH-SY5Y cells. We found that 30 mM glucose affected the expression of insulin receptors and glucose transporters, which indicated the disruption of glucose sensing. High glucose induced the activation of the phosphorylated protein kinase B (pAkt)/GSK-3ß signaling pathway and a significant increase in the expression of ß-site beta APP cleaving enzyme (BACE1), presenilin1 (PS1) and Aß42. Pretreatment with melatonin significantly reversed these parameters. We also showed that these effects are similar to those effects in the presence of the GSK-3ß blocker, N-(4-methoxybenyl)-N'-(5-nitro-1,3-thiazol-2-yl) urea (ARA) in glucose-treated hyperglycemic cells. These suggested that melatonin exerted an inhibitory effect on the activation of APP-cleaving enzymes via the GSK-3ß signaling pathway. Pretreatment with luzindole, a melatonin receptor MT1 antagonist, significantly prevented the effect of melatonin on the glucose-induced increase level of APP processing enzymes. This suggested that melatonin attenuated the toxic effect on hyperglycemia involving the amyloidogenic pathway partially mediated via melatonin receptor. Taken together the present results suggested that melatonin has a beneficial role in preventing Aß generation in a cellular model of hyperglycemia-induced DM.


Assuntos
Doença de Alzheimer , Hiperglicemia , Melatonina , Neuroblastoma , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Glucose/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Hiperglicemia/tratamento farmacológico , Melatonina/farmacologia , Neuroblastoma/metabolismo , Receptores de Melatonina/metabolismo
12.
Chem Biol Interact ; 351: 109703, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34673010

RESUMO

BACKGROUND: Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT2C receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment. METHOD: Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks. During the last 4 weeks of D-gal treatment, rats were treated with agomelatine (40 mg/kg) or melatonin (10 mg/kg). At the end of the experiment, all rats were assessed for short-term memory by using the Morris water maze test. Subsequently, rats were sacrified and the hippocampus was removed from each rat for determination of reactive oxygen species (ROS), malondialdehyde (MDA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays; and immunohistochemistry related to ER stress, mitochondrial dysfunction, and apoptosis. RESULTS: Agomelatine suppressed the expression of the aging-related proteins P16 and receptor for advanced glycation endproducts (RAGE), the expression of NADPH oxidase (NOX) 2 and 4, and ROS production. This treatment also shifted the morphology of astrocytes and microglia toward homeostasis. Furthermore, agomelatine decreased inositol-requiring enzyme 1 (pIRE1), protein kinase R-like endoplasmic reticulum kinase (pPERK), and chaperone binding immunoglobulin protein (BiP), leading to suppression of ER stress markers C/EBP homologous protein (CHOP) and caspase-12. Agomelatine reduced Ca2+ from the ER and stabilized the mitochondrial membrane stability, which was denoted by the BCL2 Associated X (Bax)/B-cell lymphoma 2 (Bcl2) balance. Agomelatine decreased cleaved caspase-3 production and the Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive area, and glutamate excitotoxicity was prevented via suppression of N-methyl-d-aspartate (NMDA) receptor subunit expression. Agomelatine exhibited effects that were similar to melatonin. CONCLUSION: Agomelatine improved neurodegeneration in a rat model of hippocampal aging by attenuating ROS production, ER stress, mitochondrial dysfunction, excitotoxicity, and apoptosis.


Assuntos
Acetamidas/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Envelhecimento/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Galactose , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor MT1 de Melatonina/agonistas
13.
Clin Exp Pharmacol Physiol ; 48(12): 1712-1723, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34396568

RESUMO

Cancer stem cells (CSCs), a small subpopulation of tumour cells, have properties of self-renewal and multipotency, which drive cancer progression and resistance to current treatments. Compounds potentially targeting CSCs have been recently developed. This study shows how melatonin, an endogenous hormone synthesised by the pineal gland, and its derivative suppress CSC-like phenotypes of human non-small cell lung cancer (NSCLC) cell lines, H460, H23, and A549. The effects of MLT and its derivative, acetyl melatonin (ACT), on CSC-like phenotypes were investigated using assays for anchorage-independent growth, three-dimensional spheroid formation, scratch wound healing ability, and CSC marker and upstream protein signalling expression. Enriched CSC spheroids were used to confirm the effect of both compounds on lung cancer cells. MLT and ACT inhibited CSC-like behaviours by suppression of colony and spheroid formation in NSCLC cell lines. Their effects on spheroid formation were confirmed in CSC-enriched H460 cells. CSC markers, CD133 and ALDH1A1, were depleted by both compounds. The behaviour and factors associated to epithelial-mesenchymal transition, as indicated by cell migration and the protein vimentin, were also decreased by MLT and ACT. Mechanistically, MLT and ACT decreased the expression of stemness proteins Oct-4, Nanog, and ß-catenin by reducing active AKT (phosphorylated AKT). Suppression of the AKT pathway was not mediated through melatonin receptors. This study demonstrates a novel role, and its underlying mechanism, for MLT and its derivative ACT in suppression of CSC-like phenotypes in NSCLC cells, indicating that they are potential candidates for lung cancer treatment.


Assuntos
Neoplasias Pulmonares
14.
Curr Alzheimer Res ; 17(5): 446-459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579500

RESUMO

BACKGROUND: Amyloid Precursor Protein (APP)-Binding Protein 1 (APP-BP1) is a crucial regulator of many key signaling pathways and functions mainly as a scaffold protein to enhance molecular interactions and facilitate catalytic reactions. The interaction of APP-BP1 with Amyloid Precursor Protein (APP) plays a role in cell cycle transit control, which determines the mechanism behind the loss of cell cycle regulation in Alzheimer's Disease (AD). In contrast, neddylation, a posttranslational modification mediated by conjugation of ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8), is activated by a heterodimer composed of APP-BP1 and NEDD8-activating enzyme E1 catalytic subunit (Uba3). NEDD8 controls vital biological events, and along with APP-BP1, its levels are deregulated in AD. OBJECTIVE: The present study investigated the role of melatonin in regulating the APP-BP1 pathway under both physiological and pathological conditions to develop an understanding of the underlying mechanisms. METHODS: Therefore, human SH-SY5Y neuroblastoma cells were treated with various concentrations of Aß42 to induce neurotoxic conditions comparable to AD. RESULTS: The results are the first to demonstrate that melatonin prevents Aß42-induced enhancement of APP-BP1 protein expression and alteration in the cellular localization of NEDD8. Moreover, using MLN4924 (APP-BP1 pathway blocker), we also verified the components of the downstream effector cascade of the APP-BP1 pathway, including tau, APP-cleaving secretases, ß-catenin and p53. CONCLUSION: These findings indicate that melatonin regulates the interplay of molecular signaling associated with the APP-BP1 pathway and might preclude the pathogenic mechanisms occurring during disease development, thus providing a propitious therapeutic strategy for preventing AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Antioxidantes/farmacologia , Melatonina/farmacologia , Proteína NEDD8/metabolismo , Fragmentos de Peptídeos/toxicidade , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/biossíntese , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Neuroblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
J Chem Neuroanat ; 106: 101793, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348875

RESUMO

The interaction between the activation of protein phosphatase, calcineurin (CaN), and the dephosphorylation and nuclear translocation of nuclear factor of activated T-cells (NFAT), a transcriptional factor in the immune system, has attracted interest as a key factor responsible for the cell death process. In this study, the effects of melatonin on the interaction between CaN and NFAT signaling during oxidative stress-induced cell death were investigated. Human neuroblastoma SH-SY5Y cells were treated with the non-radical reactive oxygen species hydrogen peroxide (H2O2). Cells were treated with 200 µM H2O2 for the indicated time. Some H2O2-treated cells were pretreated with melatonin for 1 h. Control cells were treated with the same concentration of ethanol used to dilute melatonin. H2O2-induced cell death promoted increases in reactive oxygen species (ROS) production and the nuclear translocation of NFAT, which were related to increased levels the active, cleaved form of CaN (32.5 kDa). In addition, pretreatment of H2O2-treated cells with melatonin decreased cell death, ROS production, the levels of the active-cleaved form of CaN and the nuclear translocation of NFAT. Based on these findings, melatonin may exert its neuroprotective effects on oxidative damage-induced cell death by inhibiting CaN-activated the nuclear translocation of NFAT.


Assuntos
Antioxidantes/farmacologia , Calcineurina/metabolismo , Morte Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Melatonina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138327

RESUMO

Neuronal insulin resistance is a significant feature of Alzheimer's disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model of neuronal insulin resistance with Alzheimer's formation has not been thoroughly investigated. The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y. Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular, the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3ß). Moreover, liraglutide reduced the activity of beta secretase 1 (BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells. This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal transduction but also inhibit the formation of pathogenic Alzheimer's proteins like Aß in neuronal cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide administration, these findings suggest that the use of liraglutide may be a promising therapy for AD with insulin-resistant condition.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Insulina/metabolismo , Liraglutida/uso terapêutico , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Imunoprecipitação , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Neurotox Res ; 37(3): 640-660, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31900895

RESUMO

The specialized brain endothelial cells interconnected by unique junctions and adhesion molecules are distinctive features of the blood-brain barrier (BBB), maintaining the homeostasis of the cerebral microenvironment. This study was designed to investigate the protective effects of melatonin on methamphetamine (METH)-induced alterations of BBB integrity. Wistar rats were randomly distributed into groups and underwent melatonin pretreatment and escalating-high doses of METH treatment. Immunohistochemistry was performed to demonstrate the BBB leakage. Protein and RNA samples were isolated from hippocampal and prefrontal cortical tissues and measured expression levels of molecular markers associated with BBB structural components and inflammatory processes. METH provoked the loss of zonula occludens (ZO)-1, occludin, and claudin-5 tight junction proteins. Furthermore, METH caused an excessive increase in matrix metalloproteinase-9 (MMP-9) enzyme, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) and the increase in NAD(P)H oxidase 2 (NOX2). Melatonin exerted the protective effects by recovering tight junction loss; attenuating excessive MMP-9, NOX2, and cell adhesion molecule expression; and reducing serum albumin in the brain. Our results also showed the protective effects of melatonin against METH neurotoxic profiles, characterized by reactive gliosis: microglia (integrin-αM) and astrocyte (GFAP); an excessive upregulation of primary pro-inflammatory cytokines: interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); activation of neuroinflammatory signaling: nuclear factor-kappa B (NF-κB); and suppression of anti-oxidative signaling: nuclear factor erythroid 2-related factor (Nrf2), that may exacerbate BBB structural impairment. Our results provide insights into the beneficial effects of melatonin against METH-induced BBB disruption and mechanisms that play detrimental roles in BBB impairment by in vivo design.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Melatonina/administração & dosagem , Metanfetamina/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Adesão Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
18.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658698

RESUMO

Japanese encephalitis virus (JEV) infection induces uncontrolled neuronal apoptosis, leading to irreversible brain damage. However, the mechanism of JEV-induced neuronal apoptosis has not been clearly elucidated. This study aimed to investigate both virus replication and neuronal cell apoptosis during JEV infection in human neuroblastoma SH-SY5Y cells. As a result, the kinetic productions of new viral progeny were time- and dose-dependent. The stimulation of SH-SY5Y cell apoptosis was dependent on the multiplicity of infections (MOIs) and infection periods, particularly during the late period of infection. Interestingly, we observed that of full-length Bax (p21 Bax) level started to decrease, which corresponded to the increased level of its cleaved form (p18 Bax). The formation of p18 Bax resulting in cytochrome c release into the cytosol appeared to correlate with JEV-induced apoptotic cell death together with the activation of caspase-3/7 activity, especially during the late stage of a robust viral infection. Therefore, our results suggest another possible mechanism of JEV-induced apoptotic cell death via the induction of the proteolysis of endogenous p21 Bax to generate p18 Bax. This finding could be a new avenue to facilitate novel drug discovery for the further development of therapeutic treatments that could relieve neuronal damage from JEV infection.


Assuntos
Morte Celular/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/metabolismo , Neuroblastoma/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Humanos , Cinética , Neuroblastoma/virologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Vero , Replicação Viral
19.
Neurosci Lett ; 701: 20-25, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30771376

RESUMO

Methamphetamine is a potent and highly addictive psychostimulant whose abuse has turned out to be a global health hazard. The multitudinous effects it exerts at the cellular level induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Strikingly, brain changes, tissue damage and neuropsychological symptoms due to Meth exposure compels and necessitates to link the probability of risk of developing premature Alzheimer's disease, a progressive neurodegenerative disorder characterized by amyloid plaques composed of amyloid-ß peptides and clinical dementia. These peptides are derived from sequential cleavages of the ß-amyloid precursor protein by ß- and γ-secretases. Previous studies reveals evidence for both positive and negative effects of Meth pertaining to cognitive functioning based on the dosage paradigm and duration of exposure revealing a beneficial psychotropic profile under some conditions and deleterious cognitive deficits under some others. In this context, we proposed to examine the effect of Meth on ßAPP metabolism and ßAPP-cleaving secretases in the human neuroblastoma SH-SY5Y cell line. Our results showed that Meth dose-dependently increases BACE1 expression and catalytic activity, while its effect on the α-cleavage of ßAPP and on the expression and catalytic activity of the main α-secretase ADAM10 display a bell-curve shape. To our knowledge, the present study is the first to demonstrate that Meth can control ßAPP-cleaving secretases. Moreover, we propose from these findings that the deleterious effect of Meth on cognitive decline might be an outcome of high dosage paradigm whereas acute and short-term drug use which stimulated sAPPα might produce improvements in cognition in disorders such as AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Metanfetamina/farmacologia , Proteína ADAM10/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroblastoma
20.
J Proteomics ; 194: 14-24, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597312

RESUMO

Burkholderia pseudomallei is a Gram negative bacterium and the causative agent of melioidosis. Nonetheless, how virulence factors and pathogenic mechanisms are regulated have been elusive. In this study, we determined a role of polyphosphate kinase 1 (Ppk1) in regulation of quorum sensing (QS) and the sigma factor RpoS, and identified genes co-regulated by Ppk1, QS and RpoS. We find that Ppk1 positively controls autoinducer production and expression of rpoS transcript. Proteomic analysis identified 70 protein spots that are differentially expressed between B. pseudomallei wildtype and its ppk1-deficient strain. Within Ppk1regulated proteins, expression of 31 proteins are co-regulated by both RpoS and QS, whose functions of the majority of these proteins are associated with energy production and stress response. Moreover, expression of proteins involved in type III secretion system (T3SS) is also controlled by Ppk1. Quantitative PCR analysis confirmed that the T3SS genes bipB, bsaR and hrpK are down-regulated in ppk1 mutant. In addition, the ppk1-deficient strain exhibits defects in adhesion and invasion into human lung epithelial cells. Our work therefore reveals regulation of virulence factors and a regulatory mechanism of RpoS and QS by Ppk1, which altogether participate in gene expression control, and might be crucial for pathogenicity of B. pseudomallei. SIGNIFICANCE: Polyphosphate kinase1 (Ppk1), which is a key enzyme in polyphosphate biosynthesis, is pivotal for virulence of the melioidosis pathogen B. pseudomallei. This enzyme is not present in human. Therefore, it has been proposed to be a key target for anti-bacterial drugs. An important step toward development of novel antibiotics and therapeutic strategies is an analysis of proteins that are controlled by Ppk1. By using proteomics, we find that Ppk1 co-regulates virulence-associated genes together with quorum sensing (QS) and the sigma factor RpoS. Moreover, we reveal that Ppk1 is critical for bacterial adhesion and host cell invasion, supporting the finding from our proteome analysis.


Assuntos
Proteínas de Bactérias , Burkholderia pseudomallei , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato) , Percepção de Quorum , Fator sigma , Sistemas de Secreção Tipo III , Células A549 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Humanos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA