Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 362: 124971, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293654

RESUMO

Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 µg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences.

2.
Sci Total Environ ; 929: 172648, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649036

RESUMO

Growing attention is being directed towards exploring the potential harmful effects of microplastic (MP) particles on human health. Previous reports on human exposure to MPs have primarily focused on inhalation, ingestion, transdermal routes, and, potentially, transplacental transfer. The intravenous transfer of MP particles in routine healthcare settings has received limited exploration in existing literature. Standard hospital IV system set up with 0.9 % NaCl in a laminar flow hood with MP contamination precautions. Various volumes of 0.9 % NaCl passed through the system, some with a volumetric pump. Fluid filtered with Anodisc filters washed with isopropyl alcohol. The IV cannula was immersed in Mili-Q water for 72 h to simulate vein conditions. Subsequently, the water was filtered and washed. Optical photothermal infrared (O-PTIR) microspectroscopy is used to examine filters for MP particles. All filters examined from the IV infusion system contained MP particles, including MPs from the polymer materials used in the manufacture of the IV delivery systems (polydimethylsiloxane, polypropylene, polystyrene, and polyvinyl chloride) and MP particles arising from plastic resin additives (epoxy resin, polyamide resin, and polysiloxane-containing MPs). The geometric mean from the extrapolated result data indicated that approximately 0.90 MP particles per mL of 0.9 % NaCl solution can be administered through a conventional IV infusion system in the absence of a volumetric pump. However, with the implementation of a pump, this value may increase to 1.57 particles per mL. Notably, over 72 h, a single cannula was found to release approximately 558 MP particles including polydimethylsiloxane, polysiloxane-containing MPs, polyamide resin, and epoxy resin. Routine IV infusion systems release microplastics. MP particles are also released around IV cannulas, suggesting transfer into the circulatory system during standard IV procedures.


Assuntos
Microplásticos , Microplásticos/análise , Espectrofotometria Infravermelho , Monitoramento Ambiental/métodos , Infusões Intravenosas , Humanos , Plásticos/análise
3.
Sci Rep ; 12(1): 15412, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104368

RESUMO

This work investigates non-contact reflectance spectral imaging techniques, i.e. microscopic Fourier transform infrared (FTIR) imaging, macroscopic visible-near infrared (VNIR), and shortwave infrared (SWIR) spectral imaging, for the identification of bacteria on stainless steel. Spectral images of two Gram-positive (GP) bacteria (Bacillus subtilis (BS) and Lactobacillus plantarum (LP)), and three Gram-negative (GN) bacteria (Escherichia coli (EC), Cronobacter sakazakii (CS), and Pseudomonas fluorescens (PF)), were collected from dried suspensions of bacterial cells dropped onto stainless steel surfaces. Through the use of multiple independent biological replicates for model validation and testing, FTIR reflectance spectral imaging was found to provide excellent GP/GN classification accuracy (> 96%), while the fused VNIR-SWIR data yielded classification accuracy exceeding 80% when applied to the independent test sets. However, classification within gram type was far less reliable, with lower accuracies for classification within the GP (< 75%) and GN (≤ 51%) species when calibration models were applied to the independent test sets, underlining the importance of independent model validation when dealing with samples of high biological variability.


Assuntos
Pseudomonas fluorescens , Aço Inoxidável , Diagnóstico por Imagem , Bactérias Gram-Negativas , Bactérias Gram-Positivas
4.
Sci Total Environ ; 851(Pt 1): 158111, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987230

RESUMO

This systematic review aims to summarize the current knowledge on biological effects of micro- and nanoplastics (MNPs) on human health based on mammalian systems. An extensive search of the literature led to a total of 133 primary research articles on the health relevance of MNPs. Our findings revealed that although the study of MNP cytotoxicity and inflammatory response represents a major research theme, most studies (105 articles) focused on the effects of polystyrene MNPs due to their wide availability as a well characterised research material that can be manufactured with a large range of particle sizes, fluorescence labelling as well as various surface modifications. Among the 133 studies covered in this review, 117 articles reported adverse health effects after being exposed to MNPs. Mammalian in vitro studies identified multiple biological effects including cytotoxicity, oxidative stress, inflammatory response, genotoxicity, embryotoxicity, hepatotoxicity, neurotoxicity, renal toxicity and even carcinogenicity, while rodent in vivo models confirmed the bioaccumulation of MNPs in the liver, spleen, kidney, brain, lung and gut, presenting adverse effects at different levels including reproductive toxic effects and trans-generational toxicity. In contrast, the remaining 16 studies indicated an insignificant impact of MNPs on humans. A few studies attempted to investigate the mechanisms or factors driving the toxicity of MNPs and identified several determining factors including size, concentration, shape, surface charge, attached pollutants and weathering process, which, however, were not benchmarked or considered by most studies. This review demonstrates that there are still many inconsistencies in the evaluation of the potential health effects of MNPs due to the lack of comparability between studies. Current limitations hindering the attainment of reproducible conclusions as well as recommendations for future research directions are also presented.


Assuntos
Poluentes Ambientais , Microplásticos , Animais , Humanos , Mamíferos , Microplásticos/toxicidade , Tamanho da Partícula , Plásticos/toxicidade , Poliestirenos
5.
Analyst ; 146(13): 4195-4211, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34060548

RESUMO

The diagnosis of prostate cancer is challenging due to the heterogeneity of its presentations, leading to the over diagnosis and treatment of non-clinically important disease. Accurate diagnosis can directly benefit a patient's quality of life and prognosis. Towards addressing this issue, we present a learning model for the automatic identification of prostate cancer. While many prostate cancer studies have adopted Raman spectroscopy approaches, none have utilised the combination of Raman Chemical Imaging (RCI) and other imaging modalities. This study uses multimodal images formed from stained Digital Histopathology (DP) and unstained RCI. The approach was developed and tested on a set of 178 clinical samples from 32 patients, containing a range of non-cancerous, Gleason grade 3 (G3) and grade 4 (G4) tissue microarray samples. For each histological sample, there is a pathologist labelled DP-RCI image pair. The hypothesis tested was whether multimodal image models can outperform single modality baseline models in terms of diagnostic accuracy. Binary non-cancer/cancer models and the more challenging G3/G4 differentiation were investigated. Regarding G3/G4 classification, the multimodal approach achieved a sensitivity of 73.8% and specificity of 88.1% while the baseline DP model showed a sensitivity and specificity of 54.1% and 84.7% respectively. The multimodal approach demonstrated a statistically significant 12.7% AUC advantage over the baseline with a value of 85.8% compared to 73.1%, also outperforming models based solely on RCI and mean and median Raman spectra. Feature fusion of DP and RCI does not improve the more trivial task of tumour identification but does deliver an observed advantage in G3/G4 discrimination. Building on these promising findings, future work could include the acquisition of larger datasets for enhanced model generalization.


Assuntos
Neoplasias da Próstata , Qualidade de Vida , Humanos , Aprendizado de Máquina , Masculino , Gradação de Tumores , Neoplasias da Próstata/diagnóstico por imagem
6.
J Hazard Mater ; 418: 126328, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118538

RESUMO

The addition of plastic substances in teabags is of increasing concern for conscious consumers due to the harmful effects on the environment and the potential threats to human health. This work introduces an innovative and cost-effective approach to detect and quantify plastic substances in teabags by applying near infrared hyperspectral imaging (951-2496 nm) coupled with multivariate analysis. Teabags from 6 popular brands were investigated and categorized into three classes based on spectral unmixing and target detection results: 1) the plastic teabag primarily made of nylon 6/6; 2) those made of a composite with various polypropylene and cellulose ratios; 3) biodegradable teabags free from any plastic traces. Results demonstrated the presence of numerous plastic particles in the beverage obtained after steeping nylon teabags, but the release of particles was further amplified after microwave treatment. Nevertheless, target detection results obtained from Fourier transform infrared imaging (4000-675 cm-1) dataset evidenced that a considerable proportion of particle residues detected were the contaminants obtained from tea granules that adsorbed on the teabag. This work highlights the significant importance of performing rigorous spectral analysis for chemical characterization, which is lacking in most published microplastic studies.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Nylons , Polipropilenos , Poluentes Químicos da Água/análise
7.
Arch Biochem Biophys ; 689: 108462, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32590068

RESUMO

Silver nanoparticles (AgNP) emerged as a promising reagent for cancer therapy with oxidative stress implicated in the toxicity. Meanwhile, studies reported cold atmospheric plasma (CAP) generation of reactive oxygen and nitrogen species has selectivity towards cancer cells. Gold nanoparticles display synergistic cytotoxicity when combined with CAP against cancer cells but there is a paucity of information using AgNP, prompting to investigate the combined effects of CAP using dielectric barrier discharge system (voltage of 75 kV, current is 62.5 mA, duty cycle of 7.5kVA and input frequency of 50-60Hz) and 10 nm PVA-coated AgNP using U373MG Glioblastoma Multiforme cells. Cytotoxicity in U373MG cells was >100-fold greater when treated with both CAP and PVA-AgNP compared with either therapy alone (IC50 of 4.30 µg/mL with PVA-AgNP alone compared with 0.07 µg/mL after 25s CAP and 0.01 µg/mL 40s CAP). Combined cytotoxicity was ROS-dependent and was prevented using N-Acetyl Cysteine. A novel darkfield spectral imaging method investigated and quantified AgNP uptake in cells determining significantly enhanced uptake, aggregation and subcellular accumulation following CAP treatment, which was confirmed and quantified using atomic absorption spectroscopy. The results indicate that CAP decreases nanoparticle size, decreases surface charge distribution of AgNP and induces uptake, aggregation and enhanced cytotoxicity in vitro.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Gases em Plasma/farmacologia , Prata/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Nanopartículas Metálicas/análise , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Prata/farmacocinética
8.
J Agric Food Chem ; 58(10): 6226-33, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20411944

RESUMO

Physical stress (i.e., bruising) during harvesting, handling, and transportation triggers enzymatic discoloration of mushrooms, a common and detrimental phenomenon largely mediated by polyphenol oxidase (PPO) enzymes. Hyperspectral imaging (HSI) is a nondestructive technique that combines imaging and spectroscopy to obtain information from a sample. The objective of this study was to assess the ability of HSI to predict the activity of PPO on mushroom caps. Hyperspectral images of mushrooms subjected to various damage treatments were taken, followed by enzyme extraction and PPO activity measurement. Principal component regression (PCR) models (each with three PCs) built on raw reflectance and multiple scatter-corrected (MSC) reflectance data were found to be the best modeling approach. Prediction maps showed that the MSC model allowed for compensation of spectral differences due to sample curvature and surface irregularities. Results reveal the possibility of developing a sensor that could rapidly identify mushrooms with a higher likelihood to develop enzymatic browning, hence aiding produce management decision makers in the industry.


Assuntos
Agaricus/enzimologia , Catecol Oxidase/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ativação Enzimática , Tecnologia de Alimentos/métodos , Reação de Maillard , Monofenol Mono-Oxigenase/metabolismo , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA