Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 160(6): 517-539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566258

RESUMO

Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.


Assuntos
Salmo salar , Animais , Masculino , Salmo salar/metabolismo , Truta/genética , Truta/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Encéfalo/metabolismo , Regiões Promotoras Genéticas/genética
2.
Front Immunol ; 14: 1050594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814930

RESUMO

The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 µm x 30 µm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 µm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm.


Assuntos
Epitélio Corneano , Estudos Retrospectivos , Córnea , Macrófagos , Corantes Fluorescentes , Lasers
3.
Histochem Cell Biol ; 149(1): 75-96, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28983690

RESUMO

Much progress has been made regarding our understanding of aromatase regulation, estrogen synthesis partitioning and communication between the germinal and somatic compartments of the differentiating gonad. We now know that most of the enzymatic and signaling apparatus required for steroidogenesis is endogenously expressed within germ cells. However, less is known about the expression and localization of steroidogenic components within mature spermatozoa. We have assembled a sperm library presenting 197,015 putative transcripts. Co-expression clustering analysis revealed that 6687 genes were present at higher levels in sperm in comparison to fifteen other salmon tissue libraries. The sperm transcriptome is highly complex containing the highest proportion of unannotated genes (45%) of the tissues analyzed. Our analysis of highly expressed genes in late-stage sperm revealed dedication to tasks involving chromatin remodeling, flagellogenesis and proteolysis. In addition, using various different embedding and microscopic techniques, we examined the morphology of salmon spermatozoa and characterized expression and localization of several estrogenic regulatory and signaling proteins by immunohistochemistry. We provide evidence for the endogenous synthesis and localization of aromatase (CYP19A and CYP19B1) and potential mediators of estrogen [i.e., ER-alpha and soluble adenylyl cyclase (sAC)] or phosphate (i.e., CREB and FOXL2A) signaling. Partitioning of select transcripts that encode AR-beta, FSH and the LH receptor, but not AR-alpha, LH or the FSH receptor, further points to localized specificity of function in the steroidogenic circuitry of the sperm cell. These results open new avenues of investigation to further our understanding of the intra- and intercellular regulatory processes that guide sperm development and biology.


Assuntos
Estrogênios/metabolismo , Salmo salar/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Animais , Imuno-Histoquímica , Masculino
4.
Comp Biochem Physiol B Biochem Mol Biol ; 164(4): 236-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23391703

RESUMO

Transcripts for dax1, foxl2, mis and sf1 are co-expressed in the somatic companion cells of teleost germ cells. These regulatory factors function, in part, to modulate the transcription of aromatase, particularly cyp19a, the terminal enzyme of estrogen biosynthesis. At least two separate aromatase loci exist in teleost fish that encode distinct isoforms. The activity of two forms, cyp19a and cyp19b1, is predominantly associated with the ovary and the brain, respectively. We isolated sequences that compose the proximal promoters of cyp19a, cyp19b1 and foxl2a, to identify potential transcription factor binding motifs to define sex-specific regulatory profiles for each gene. We also provide evidence for the translation and immunological localization of DAX-1, FOXL2 and MIS to the endoplasmic reticulum and accumulation within secretory vesicles of the salmon oocyte. We found no evidence for the expression of CYP19A or CYP19B1 in the oocyte at the one-year-old stage. However, synthesis of both aromatases was localized to testicular germ and soma cells at this early stage of development. Production of these regulatory factors in the germ cells may serve to modulate the transcription and activity of endogenous aromatase and/or contribute to the differentiation of the neighbouring companion cells through secretory signaling.


Assuntos
Aromatase/metabolismo , Ovário/metabolismo , Salmo salar/metabolismo , Testículo/metabolismo , Animais , Encéfalo/metabolismo , Receptor Nuclear Órfão DAX-1/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Células Germinativas/metabolismo , Masculino , Especificidade de Órgãos , Regiões Promotoras Genéticas , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Diferenciação Sexual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS Negl Trop Dis ; 3(2): e373, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19190729

RESUMO

BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides) to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27), a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced secretion of tumour necrosis factor alpha (TNF-alpha), a cytokine that is associated with inflammation and cachexia (wasting) in sleeping sickness patients. As a prelude to in vivo applications, high affinity antibodies to BMAP-18 were produced in rabbits and used in immuno-mass spectrometry assays to detect the intact peptide in human blood and plasma. CONCLUSIONS/SIGNIFICANCE: BMAP-18, a truncated form of the potent antimicrobial BMAP-27, showed low toxicity to mammalian cells, insect cells and the tsetse bacterial symbiont Sodalis glossinidius while retaining an ability to kill a variety of species and life cycle stages of pathogenic kinetoplastid parasites in vitro. BMAP-18 also inhibited secretion of TNF-alpha, an inflammatory cytokine that plays a role in the cachexia associated with African sleeping sickness. These findings support the idea that BMAP-18 should be explored as a candidate for therapy of economically important trypanosome-infected hosts, such as cattle, fish and humans, and for paratransgenic expression in Sodalis glossinidius, a bacterial symbiont in the tsetse vector, as a strategy for interference with trypanosome transmission.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Leishmania donovani/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Insetos , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células NIH 3T3 , Testes de Sensibilidade Parasitária , Proteínas/química , Proteínas/farmacologia , Ratos , Spodoptera , Tripanossomicidas/química , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
6.
J Virol ; 78(5): 2606-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14963166

RESUMO

Cryoelectron microscopy of Mouse mammary tumor virus, a Betaretrovirus, provided information about glycoprotein structure and core formation. The virions showed the broad range of diameters typical of retroviruses. Betaretroviruses assemble cytoplasmically, so the broad size range cannot reflect the use of the plasma membrane as a platform for assembly.


Assuntos
Microscopia Crioeletrônica , Vírus do Tumor Mamário do Camundongo/ultraestrutura , Linhagem Celular , Membrana Celular/ultraestrutura , Membrana Celular/virologia , HIV-1/química , HIV-1/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/ultraestrutura , Montagem de Vírus
7.
J Virol ; 77(14): 7863-71, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829826

RESUMO

The double-stranded DNA (dsDNA) virus PRD1 carries its genome in a membrane surrounded by an icosahedral protein shell. The shell contains 240 copies of the trimeric P3 protein arranged with a pseudo T = 25 triangulation that is reminiscent of the mammalian adenovirus. DNA packaging and infection are believed to occur through the vertices of the particle. We have used immunolabeling to define the distribution of proteins on the virion surface. Antibodies to protein P3 labeled the entire surface of the virus. Most of the 12 vertices labeled with antibodies directed against proteins P5, P2, and P31. These proteins are known to function in virus binding to the cell surface. Proteins P6, P11, and P20 were found on a single vertex per virion. The P6 and P20 proteins are believed to function in DNA packaging. Protein P11 is a pilot protein that is involved in a complex that mediates the early stages of DNA entry to the host cell. Labeling with antibodies to P5 or P2 did not affect the labeling of P6, the unique vertex protein. Labeling with antibodies to the unique vertex protein P6 interfered with the labeling by antibodies to the unique vertex protein P20. We conclude that PRD1 utilizes 11 of its vertices for initial receptor binding. It utilizes a single, unique vertex for both DNA packing during assembly and DNA delivery during infection.


Assuntos
Bacteriófago PRD1/metabolismo , Capsídeo/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Microscopia Crioeletrônica , Genoma Viral , Vírion/metabolismo
8.
EMBO J ; 22(6): 1255-62, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12628918

RESUMO

In tailed bacteriophages and herpes viruses, the viral DNA is packaged through the portal protein channel. Channel closure is essential to prevent DNA release after packaging. Here we present the connector structure from bacteriophage SPP1 using cryo-electron microscopy and single particle analysis. The multiprotein complex comprises the portal protein gp6 and the head completion proteins gp15 and gp16. Although we show that gp6 in the connector has a fold similar to that of the isolated portal protein, we observe conformational changes in the region of gp6 exposed to the DNA-packaging ATPase and to gp15. This reorganization does not cause closure of the channel. The connector channel traverses the full height of gp6 and gp15, but it is closed by gp16 at the bottom of the complex. Gp16 acts as a valve whose closure prevents DNA leakage, while its opening is required for DNA release upon interaction of the virus with its host.


Assuntos
Fagos Bacilares/química , Fagos Bacilares/ultraestrutura , Bacillus subtilis/virologia , Microscopia Crioeletrônica , DNA Viral/ultraestrutura , Proteínas Virais/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Fagos Bacilares/metabolismo , Capsídeo/química , Capsídeo/metabolismo , DNA Viral/metabolismo , Microscopia Imunoeletrônica , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteínas Virais/ultraestrutura , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA