Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(1): 992-1012, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520565

RESUMO

Histone protein modifications control the inflammatory state of many immune cells. However, how dynamic alteration in histone methylation causes endothelial inflammation and apoptosis is not clearly understood. To examine this, we explored two contrasting histone methylations; an activating histone H3 lysine 4 trimethylation (H3K4me3) and a repressive histone H3 lysine 27 trimethylation (H3K27me3) in endothelial cells (EC) undergoing inflammation. Through computer-aided reconstruction and 3D printing of the human coronary artery, we developed a unique model where EC were exposed to a pattern of oscillatory/disturbed flow as similar to in vivo conditions. Upon induction of endothelial inflammation, we detected a significant rise in H3K4me3 caused by an increase in the expression of SET1/COMPASS family of H3K4 methyltransferases, including MLL1, MLL2, and SET1B. In contrast, EC undergoing inflammation exhibited truncated H3K27me3 level engendered by EZH2 cytosolic translocation through threonine 367 phosphorylation and an increase in the expression of histone demethylating enzyme JMJD3 and UTX. Additionally, many SET1/COMPASS family of proteins, including MLL1 (C), MLL2, and WDR5, were associated with either UTX or JMJD3 or both and such association was elevated in EC upon exposure to inflammatory stimuli. Dynamic enrichment of H3K4me3 and loss of H3K27me3 at Notch-associated gene promoters caused ADAM17 and Jagged-1 derepression and abrupt Notch activation. Conversely, either reducing H3K4me3 or increasing H3K27me3 in EC undergoing inflammation attenuated Notch activation, endothelial inflammation, and apoptosis. Together, these findings indicate that dynamic chromatin modifications may cause an inflammatory and apoptotic switch of EC and that epigenetic reprogramming can potentially improve outcomes in endothelial inflammation-associated cardiovascular diseases.


Assuntos
Histonas , Lisina , Proteína ADAM17/metabolismo , Células Endoteliais/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Lisina/metabolismo
2.
Tissue Eng Part A ; 24(5-6): 448-457, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28683667

RESUMO

Human perivascular stem/stromal cells (PSC) are a multipotent mesodermal progenitor cell population defined by their perivascular residence. PSC are most commonly derived from subcutaneous adipose tissue, and recent studies have demonstrated the high potential for clinical translation of this fluorescence-activated cell sorting-derived cell population for bone tissue engineering. Specifically, purified PSC induce greater bone formation than unpurified stroma taken from the same patient sample. In this study, we examined the differences in early innate immune response to human PSC or unpurified stroma (stromal vascular fraction [SVF]) during the in vivo process of bone formation. Briefly, SVF or PSC from the same patient sample were implanted intramuscularly in the hindlimb of severe combined immunodeficient (SCID) mice using an osteoinductive demineralized bone matrix carrier. Histological examination of early inflammatory infiltrates was examined by hematoxylin and eosin and immunohistochemical staining (Ly-6G, F4/80). Results showed significantly greater neutrophilic and macrophage infiltrates within and around SVF in comparison to PSC-laden implants. Differences in early postoperative inflammation among SVF-laden implants were associated with reduced osteogenic differentiation and bone formation. Similar findings were recapitulated with PSC implantation in immunocompetent mice. Exaggerated postoperative inflammation was associated with increased IL-1α, IL-1ß, IFN-γ, and TNF-α gene expression among SVF samples, and conversely increased IL-6 and IL-10 expression among PSC samples. These data document a robust immunomodulatory effect of implanted PSC, and an inverse correlation between host inflammatory cell infiltration and stromal progenitor cell-mediated ossification.


Assuntos
Matriz Óssea , Células Imobilizadas , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Osteogênese/imunologia , Animais , Matriz Óssea/imunologia , Matriz Óssea/transplante , Células Imobilizadas/imunologia , Células Imobilizadas/transplante , Citocinas/imunologia , Xenoenxertos , Humanos , Camundongos , Camundongos SCID
3.
Tissue Eng Part A ; 20(19-20): 2699-710, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24785569

RESUMO

INTRODUCTION: Skeletal aging is associated not only with alterations in osteoblast (OB) and osteoclast (OC) number and activity within the basic metabolic unit, but also with increased marrow adiposity. Peroxisome proliferator-activated receptor gamma (PPARγ) is commonly considered the master transcriptional regulator of adipogenesis, however, it has known roles in osteoblast and osteoclast function as well. Here, we designed a lentiviral delivery system for PPARγ shRNA, and examined its effects in vitro on bone marrow stromal cells (BMSC) and in a mouse intramedullary injection model. METHODS: PPARγ shRNA was delivered by a replication-deficient lentiviral vector, after in vitro testing to confirm purity, concentration, and efficacy for Pparg transcript reduction. Next, control green fluorescent protein lentivirus or PPARγ shRNA expressing lentivirus were delivered by intramedullary injection into the femoral bone marrow of male SCID mice. Analyses included daily monitoring of animal health, and postmortem analysis at 4 weeks. Postmortem analyses included high resolution microcomputed tomography (microCT) reconstructions and analysis, routine histology and histomorphometric analysis, quantitative real time polymerase chain reaction analysis of Pparg transcript levels, and immunohistochemical analysis for markers of adipocytes (PPARγ, fatty acid binding protein 4 [FABP4]), osteoblasts (alkaline phosphatase [ALP], osteocalcin [OCN]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP], Cathepsin K). RESULTS: In vitro, PPARγ shRNA delivery significantly reduced Pparg expression in mouse BMSC, accompanied by a significant reduction in lipid droplet accumulation. In vivo, a near total reduction in mature marrow adipocytes was observed at 4 weeks postinjection. This was accompanied by significant reductions in adipocyte-specific markers. Parameters of trabecular bone were significantly increased by both microCT and histomorphometric analysis. By immunohistochemical staining and semi-quantification, a significant increase in OCN+osteoblasts and decrease in TRAP+multinucleated osteoclasts was observed with PPARγ shRNA treatment. DISCUSSION: These findings suggest that acute loss of PPARγ in the bone marrow compartment has a significant role beyond anti-adipose effects. Specifically, we found pro-osteoblastogenic, anti-osteoclastic effects after PPARγ shRNA treatment, resulting in improved trabecular bone architecture. Future studies will examine the isolated and direct effects of PPARγ shRNA on OB and OC cell types, and it may help determine whether PPARγ antagonists are potential therapeutic agents for osteoporotic bone loss.


Assuntos
Adipogenia , Fêmur/metabolismo , Técnicas de Transferência de Genes , Lentivirus , Osteogênese , PPAR gama/biossíntese , RNA Interferente Pequeno/biossíntese , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Fêmur/citologia , Regulação da Expressão Gênica/genética , Vetores Genéticos , Masculino , Camundongos , Camundongos SCID , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , PPAR gama/genética , RNA Interferente Pequeno/genética
4.
Stem Cells Transl Med ; 1(6): 510-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23197855

RESUMO

Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34-CD45-) and adventitial cells (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais/citologia , Osteogênese , Pericitos/citologia , Adipogenia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Antígenos CD34/metabolismo , Matriz Óssea/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Antígeno CD146/metabolismo , Fosfatos de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Técnicas de Cultura de Células , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Antígenos Comuns de Leucócito/metabolismo , Lipectomia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Pericitos/efeitos dos fármacos , Estudos Prospectivos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Medicina Regenerativa/métodos , Alicerces Teciduais , Microtomografia por Raio-X
5.
Stem Cells Dev ; 21(12): 2170-8, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22264144

RESUMO

A theoretical inverse relationship exists between osteogenic (bone forming) and adipogenic (fat forming) mesenchymal stem cell (MSC) differentiation. This inverse relationship in theory partially underlies the clinical entity of osteoporosis, in which marrow MSCs have a preference for adipose differentiation that increases with age. Two pro-osteogenic cytokines have been recently studied that each also possesses antiadipogenic properties: Sonic Hedgehog (SHH) and NELL-1 proteins. In the present study, we assayed the potential additive effects of the biologically active N-terminus of SHH (SHH-N) and NELL-1 protein on osteogenic and adipogenic differentiation of human primary adipose-derived stromal cell (hASCs). We observed that both recombinant SHH-N and NELL-1 protein significantly enhanced osteogenic differentiation and reduced adipose differentiation across all markers examined (alkaline phosphatase, Alizarin red and Oil red O staining, and osteogenic gene expression). Moreover, SHH-N and NELL-1 directed signaling produced additive effects on the pro-osteogenic and antiadipogenic differentiation of hASCs. NELL-1 treatment increased Hedgehog signaling pathway expression; coapplication of the Smoothened antagonist Cyclopamine reversed the pro-osteogenic effect of NELL-1. In summary, Hedgehog and Nell-1 signaling exert additive effects on the pro-osteogenic and antiadipogenic differentiation of ASCs. These studies suggest that the combination cytokines SHH-N+NELL-1 may represent a viable future technique for inducing the osteogenic differentiation of MSCs.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Células-Tronco Adultas/fisiologia , Proteínas Hedgehog/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Osteogênese , Adulto , Células-Tronco Adultas/enzimologia , Células-Tronco Adultas/metabolismo , Fosfatase Alcalina/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Proteínas de Ligação ao Cálcio , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Proteínas Hedgehog/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/farmacologia , Fenótipo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Receptor Smoothened , Alcaloides de Veratrum/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA