Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 131: 106279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446202

RESUMO

Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.


Assuntos
Galectinas , Glicoconjugados , Humanos , Ligantes , Galectinas/metabolismo , Glicoconjugados/farmacologia , Glicoconjugados/química , Carboidratos/química , Polissacarídeos/metabolismo
2.
Chem Soc Rev ; 51(20): 8756-8783, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36193815

RESUMO

Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.


Assuntos
Azidas , Cobre , Alcinos/química , Azidas/química , Química Click/métodos , Cobre/química , Oximas , Peptídeos Cíclicos/química , Polissacarídeos , Compostos de Sulfidrila/química
4.
RSC Med Chem ; 13(1): 72-78, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35211675

RESUMO

The recruitment of antibody naturally present in human blood stream at the surface of cancer cells have been proved a promising immunotherapeutic strategy to fight cancer. Antibody recruiting molecules (ARMs) combining tumor and antibody binding modules have been developed for this purpose, however the formation of the interacting complex with both antibody and cell is difficult to optimize to stimulate immune-mediated cytotoxicity. To circumvent this limitation, we report herein a more direct approach combining cell metabolism of azido-sugar and bio-orthogonal click chemistry to conjugate at the cell glycocalyx structurally well-defined glycodendrimers as antibody binding module (ABM). We demonstrate that this strategy allows not only the recruitment of natural antibody at the surface of isolated cells or solid tumor models but also activate a cytotoxic response with human serum as unique source of immune effectors.

5.
Biomater Sci ; 9(11): 4076-4085, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33913968

RESUMO

The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVß3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex. In the present study, we synthesized a new series of ARGs composed of ABMs, i.e. self-condensed rhamnosylated cyclopeptide and polylysine dendrimer, which have been conjugated to the TBM with or without spacer. Flow cytometry and confocal microscopy experiments with human serum and different cell lines revealed that the ABM geometry significantly influences the ternary complex formation in M21, whereas no significant binding occurs in BT 549 having low integrin expression. In addition, we demonstrate with a cellular viability assay that ARGs induce high level of cytotoxicity against M21 which is also in close correlation with the ABM structure. In particular, we have shown that ARG combining cyclopeptide core and branches, with or without spacer, induce 40-57% of selective cytotoxicity against M21 cells in the presence of human serum as the unique source of immunity effectors. Finally, we also highlight that the spacer between ABM and TBM enables an increase of the immune-mediate cytotoxicity even with ABM of lower valency.


Assuntos
Anticorpos , Melanoma , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Ligantes , Melanoma/tratamento farmacológico
6.
Bioconjug Chem ; 32(5): 971-982, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33887134

RESUMO

Candida albicans causes some of the most prevalent hospital-acquired fungal infections, particularly threatening for immunocompromised patients. C. albicans strongly adheres to the surface of epithelial cells so that subsequent colonization and biofilm formation can take place. Divalent galactoside glycomimetic 1 was found to be a potent inhibitor of the adhesion of C. albicans to buccal epithelial cells. In this work, we explore the effect of multivalent presentations of glycomimetic 1 on its ability to inhibit yeast adhesion and biofilm formation. Tetra-, hexa-, and hexadecavalent displays of compound 1 were built on RAFT cyclopeptide- and polylysine-based scaffolds with a highly efficient and modular synthesis. Biological evaluation revealed that the scaffold choice significantly influences the activity of the lower valency conjugates, with compound 16, constructed on a tetravalent polylysine scaffold, found to inhibit the adhesion of C. albicans to human buccal epithelial cells more effectively than the glycomimetic 1; however, the latter performed better in the biofilm reduction assays. Interestingly, the higher valency glycoconjugates did not outperform the anti-adhesion activity of the original compound 1, and no significant effect of the core scaffold could be appreciated. SEM images of C. albicans cells treated with compounds 1, 14, and 16 revealed significant differences in the aggregation patterns of the yeast cells.


Assuntos
Materiais Biomiméticos/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Epiteliais/microbiologia , Boca/citologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Células Epiteliais/efeitos dos fármacos , Glicoconjugados/metabolismo , Humanos
7.
Chem Sci ; 11(17): 4488-4498, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-34122907

RESUMO

Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.

8.
Chemistry ; 25(68): 15429, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804008

RESUMO

Invited for the cover of this issue is Olivier Renaudet and co-workers at the Université Grenoble Alpes and funded by the European Research Council (CoG "LEGO'" no. 647938). The image illustrates a synthetic chemist playing with supramolecular structures to kill cancer cells by using natural antibodies present in the blood stream. Read the full text of the article at 10.1002/chem.201903327.


Assuntos
Anticorpos/imunologia , Glicoconjugados , Anticorpos/química , Humanos
9.
Chemistry ; 25(68): 15508-15515, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31613028

RESUMO

We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv ß3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.


Assuntos
Anticorpos/imunologia , Glicoconjugados/química , Integrina alfaVbeta3/metabolismo , Ramnose/química , Linhagem Celular Tumoral , Química Click , Citometria de Fluxo , Humanos , Imunização , Integrina alfaVbeta3/química , Ligantes
10.
Chem Commun (Camb) ; 55(85): 12845-12848, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596280

RESUMO

Multivalent mannosides with inherent macrophage recognition abilities, built on ß-cyclodextrin, RAFT cyclopeptide or peptide dendrimer cores, trigger selective inhibition of lysosomal ß-glucocerebrosidase or α-mannosidase depending on valency and topology, offering new opportunities in multitargeted drug design.


Assuntos
Desenho de Fármacos , Manosídeos/química , Glucosilceramidase/antagonistas & inibidores , Lectinas/química , Macrófagos/metabolismo , Manosídeos/metabolismo , Peptídeos Cíclicos/química , alfa-Manosidase/antagonistas & inibidores , beta-Ciclodextrinas/química
11.
Bioconjug Chem ; 29(1): 83-88, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29240403

RESUMO

Bacterial and fungal pathogens involved in lung infection in cystic fibrosis patients utilize a particular family of glycan-binding proteins, characterized by the presentation of six fucose-binding sites on a ring-shaped scaffold. These lectins are attractive targets for anti-infectious compounds that could interfere in the recognition of host tissues by pathogens. The design of a cyclopeptide-based hexavalent structure allowed for the presentation of six fucose residues. The synthetic hexavalent compound displays liable geometry resulting in high-avidity binding by lectins from Aspergillus fumigatus and Burkholderia ambifaria. Replacing the fucose residue with a conformationally constrained fucomimetic does not alter the affinity and provides fine specificity with no binding to other fucose-specific lectins.


Assuntos
Anti-Infecciosos/farmacologia , Aspergillus fumigatus/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Fucose/farmacologia , Proteínas Fúngicas/metabolismo , Lectinas/metabolismo , Peptídeos Cíclicos/farmacologia , Anti-Infecciosos/química , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Descoberta de Drogas , Fucose/análogos & derivados , Humanos , Modelos Moleculares , Peptídeos Cíclicos/química
12.
Chemistry ; 23(64): 16283-16296, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28845889

RESUMO

The large majority of TACA-based (TACA=Tumor-Associated Carbohydrate Antigens) antitumor vaccines target only one carbohydrate antigen, thereby often resulting in the incomplete destruction of cancer cells. However, the morphological heterogeneity of the tumor glycocalix, which is in constant evolution during malignant transformation, is a crucial point to consider in the design of vaccine candidates. In this paper, an efficient synthetic strategy based on orthogonal chemoselective ligations to prepare fully synthetic glycosylated cyclopeptide scaffolds grafted with both Tn and TF antigen analogues is reported. To evaluate their ability to be recognized as tumor antigens, direct interaction ELISA assays have been performed with the anti-Tn monoclonal antibody 9A7. Although both heterovalent structures showed binding capacities with 9A7, the presence of the second TF epitope did not interfere with the recognition of Tn except in one epitope arrangement. This heterovalent glycosylated structure thus represents an attractive epitope carrier to be further functionalized with T-cell peptide epitopes.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Vacinas Anticâncer/química , Vacinas Sintéticas/química , Alcinos/química , Anticorpos Monoclonais/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Azidas/química , Vacinas Anticâncer/imunologia , Catálise , Linhagem Celular Tumoral , Cobre/química , Reação de Cicloadição , Dendrímeros/química , Ensaio de Imunoadsorção Enzimática , Glicopeptídeos/síntese química , Glicopeptídeos/química , Humanos , Vacinas Sintéticas/imunologia
13.
Chempluschem ; 82(3): 390-398, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962032

RESUMO

Chronic colonization of lungs by opportunist bacteria is the major cause of mortality for cystic fibrosis patients. Among these pathogens, Burkholderia cenocepacia is responsible for cepacia syndrome, a deadly exacerbation of infection that is the main cause of poor outcomes of lung transplantation. This bacterium contains three soluble carbohydrate-binding proteins, including the B. cenocepacia lectin A (BC2L-A), which is proposed to bind to oligomannose-type N-glycan structures to adhere to host tissues. In this work, several mannosylated glycoclusters and glycodendrimers with valencies ranging from four to 24 were prepared and their interactions with BC2L-A were thermodynamically characterized by isothermal titration calorimetry. The results show that a 24-valent structure binds to BC2L-A at nanomolar concentration, which makes this compound the highest affinity monodisperse ligand for this lectin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA