Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830895

RESUMO

Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.

2.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291816

RESUMO

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

3.
Eur J Immunol ; 51(9): 2348-2350, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34019695

RESUMO

The strongest genetic and environmental risk factors for MS, an inflammatory CNS disease, are HLA-DRB1*15:01 and EBV. This work shows that HLA-DRB1*15:01 acts as a co-receptor for EBV infection of a B cell line, suggesting a mechanistic link between both risk factors for MS.


Assuntos
Cadeias HLA-DRB1/metabolismo , Herpesvirus Humano 4/metabolismo , Esclerose Múltipla/virologia , Receptores Virais/metabolismo , Linfócitos B/virologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/patologia , Humanos , Esclerose Múltipla/etiologia , Fatores de Risco
4.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429351

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.


Assuntos
Proteínas Argonautas/metabolismo , Infecções por Vírus Epstein-Barr/genética , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/isolamento & purificação , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Argonautas/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/virologia , Células Tumorais Cultivadas
5.
J Gen Virol ; 98(8): 2128-2142, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28758620

RESUMO

The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.


Assuntos
Transformação Celular Viral , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Western Blotting , Reações Cruzadas , Humanos , Imunoprecipitação , Espectrometria de Massas
6.
Prostate Cancer ; 2017: 4893921, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163933

RESUMO

Posttranscriptional gene regulation by microRNAs (miRNAs) contributes to the induction and maintenance of prostate carcinoma (PCa). To identify mRNAs enriched or removed from Ago2-containing RISC complexes, these complexes were immunoprecipitated from normal prostate fibroblasts (PNFs) and the PCa line DU145 and the bound mRNAs were quantified by microarray. The analysis of Ago complexes derived from PNFs or DU145 confirmed the enrichment or depletion of a variety of mRNAs already known from the literature to be deregulated. Novel potential targets were analyzed by luciferase assays with miRNAs known to be deregulated in PCa. We demonstrate that the mRNAs of the death effector domain-containing protein (DEDD), the tumor necrosis factor receptor superfamily, member 10b protein (TNFRSF10B), the tumor protein p53 inducible nuclear protein 1 (TP53INP1), and the secreted protein, acidic, cysteine-rich (SPARC; osteonectin) are regulated by miRNAs miR-148a, miR-20a, miR-24, and miR-29a/b, respectively. Therefore, these miRNAs represent potential targets for therapy. Surprisingly, overexpression of miR-24 induced focus formation and proliferation of DU145 cells, while miR-29b reduced proliferation. The study confirms genes deregulated in PCa by virtue of their presence/absence in the Ago2-complex. In conjunction with the already published miRNA profiles of PCa, the data can be used to identify miRNA-regulated mRNAs.

7.
Mol Cell ; 63(1): 110-24, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27345152

RESUMO

The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading.


Assuntos
Autoantígenos/metabolismo , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Isoleucina/metabolismo , Ribonucleoproteínas/metabolismo , Células A549 , Proteínas Argonautas/metabolismo , Autoantígenos/genética , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Carioferinas/metabolismo , Células MCF-7 , MicroRNAs/genética , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , RNA Polimerase III/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/genética , RNA Viral/genética , RNA Viral/metabolismo , Ribonuclease III/metabolismo , Ribonucleoproteínas/genética , Relação Estrutura-Atividade , Transfecção , Antígeno SS-B
8.
FEBS Open Bio ; 6(4): 251-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27239439

RESUMO

The aim of this work was to establish the microRNA profile of SNK6 and SNT16, two Epstein-Barr virus (EBV)-infected cell lines derived from nasal NK/T-cell lymphoma (NKTL). The oncogenic EBV is strongly associated with the pathogenesis of nasal and extranodal NK/T-cell lymphoma and expresses 44 mature microRNAs and two noncoding EBV-encoded RNAs (EBERs). miRNAs are 19-25nt noncoding RNAs that affect host and viral gene expression post-transcriptionally. Deregulated miRNA patterns are frequently linked to a variety of human cancers including lymphomas. miRNA profiling of the two NK/T cell lines vs. primary cells revealed 10 and 4 up-regulated and 10 and 12 down-regulated miRNAs in SNK6 and SNT16 cells respectively. The results were validated by qRT-PCR for selected miRNAs. Target gene analyses confirmed cullin 5 (CUL5) and sphingosin-1-phosphate receptor 1 (S1PR1) as targets for the down-regulated hsa-miR-148a and viral ebv-miR-BART16 respectively. As recently demonstrated for the regulation of IL1-alpha by miR-142-3p, coexpression of the EBERs selectively exerted corepression of S1PR1 by BART16 but not of CUL5 by miR-148a, indicating selective corepression by the EBERs.

9.
Acta Neuropathol ; 130(6): 845-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26374446

RESUMO

Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia and motor neuron disease. One consequence of the mutation is the formation of different potentially toxic polypeptides composed of dipeptide repeats (DPR) (poly-GA, -GP, -GR, -PA, -PR) generated by repeat-associated non-ATG (RAN) translation. While previous studies focusing on poly-GA pathology have failed to detect any clinico-pathological correlations in C9ORF72 mutation cases, recent data from animal and cell culture models suggested that it may be only specific DPR species that are toxic and only when accumulated in certain intracellular compartments. Therefore, we performed a systematic clinico-pathological correlative analysis with counting of actual numbers of distinct types of inclusion (neuronal cytoplasmic and intranuclear inclusions, dystrophic neurites) for each DPR protein in relevant brain regions (premotor cortex, lower motor neurons) in a cohort of 35 C9ORF72 mutation cases covering the clinical spectrum from those with pure MND, mixed FTD/MND and pure FTD. While each DPR protein pathology had a similar pattern of anatomical distribution, the total amount of inclusions for each DPR protein varied remarkably (poly-GA > GP > GR > PR/PA), indicating that RAN translation seems to be more effective from sense than from antisense transcripts. Importantly, with the exception of moderate associations for the amount of poly-GA-positive dystrophic neurites with degeneration in the frontal cortex and total burden of poly-GA pathology with disease onset, no relationship was identified for any other DPR protein pathology with degeneration or phenotype. Biochemical analysis revealed a close correlation between insoluble DPR protein species and numbers of visible inclusions, while we did not find any evidence for the presence of soluble DPR protein species. Thus, overall our findings strongly argue against a role of DPR protein aggregation as major and exclusive pathomechanism in C9ORF72 pathogenesis. However, this does not exclude that DPR protein formation might be essential in C9ORF72 pathogenesis in interplay with other consequences associated with the C9ORF72 repeat expansion.


Assuntos
Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Proteínas/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Feminino , Imunofluorescência , Demência Frontotemporal/metabolismo , Heterozigoto , Humanos , Nervo Hipoglosso , Immunoblotting , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/metabolismo , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Medula Espinal/patologia , Bancos de Tecidos
10.
Cell Cycle ; 14(16): 2619-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103464

RESUMO

Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas.


Assuntos
Produtos do Gene env/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Evolução Molecular , Gorilla gorilla/genética , Humanos , Pan troglodytes/genética , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Noncoding RNA ; 1(3): 170-191, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29861423

RESUMO

The oncogenic Epstein-Barr virus (EBV) expresses 44 mature microRNAs and two non-coding EBER RNAs of 167 (EBER1) and 172 (EBER2) nt length. MiRNA profiling of NK/T cell lines and primary cells and Northern blotting of EBV-infected cell lines and primary tumors revealed processing of EBER1 to short 5'-derived RNAs of approximately 23, 52 and 70 nt (EBER123, EBER152, and EBER170) and of EBER2 to 3' fragments. The biogenesis of these species is independent of Dicer, and EBER123 does not act like a miRNA OPEN ACCESS Non-Coding RNA 2015, 1 171 to target its complementary sequence. EBER1, EBER2 and EBER123 were bound by the lupus antigen (La), a nuclear and cytoplasmic protein that facilitates RNAi. Consistent with this, the EBERs affect regulation of interleukin 1alpha (IL1α) and RAC1 reporters harboring miR target sequences, targets of miR-142-3p. However, the EBERs have no effect upon another target of miR-142-3p, ADCY9, nor on TOMM22, a target of ebv-miR-BART16, indicative of selective modulation of gene expression by the EBERs.

12.
Mol Cancer Res ; 12(2): 250-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337069

RESUMO

UNLABELLED: MicroRNAs (miRNA) posttranscriptionally regulate gene expression and are important in tumorigenesis. Previous deep sequencing identified the miRNA profile of prostate carcinoma versus nonmalignant prostate tissue. Here, we generated miRNA expression profiles of prostate carcinoma by deep sequencing, with increasing tumor stage relative to corresponding nonmalignant and healthy prostate tissue, and detected clearly changed miRNA expression patterns. The miRNA profiles of the healthy and nonmalignant tissues were consistent with our previous findings, indicating a high fidelity of the method employed. In the tumors, quantitative real-time PCR (qRT-PCR) analysis of 40 paired samples of prostate carcinoma versus normal tissue revealed significant upregulation of miR-20a, miR-148a, miR-200b, and miR-375 and downregulation of miR-143 and miR-145. Hereby, miR-375 increased from normal to organ-confined tumors (pT2 pN0), slightly decreased in tumors with extracapsular growth (pT3 pN0), but was then expressed again at higher levels in lymph node metastasizing (pN1) tumors. The sequencing data for miR-375 were confirmed by Northern blotting and qRT-PCR. The regulation for other selected miRNAs could, however, not be confirmed by qRT-PCR in individual tumor stages. MiR-200b, in addition to miR-200c and miR-375 reduced the expression of SEC23A. Interestingly, miR-375, found by sequencing in pT2 upregulated by us and others in tumor versus normal tissue, and miR-15a, found by sequencing in pT2 and pT3 and in the metastasizing tumors, target the phosphatases PHLPP1 and PHLPP2, respectively. PHLPP1 and PHLPP2 dephosphorylate members of the AKT family of signal transducers, thereby inhibiting cell growth. Coexpression of miR-15a and miR-375 resulted in downregulation of PHLPP1/2 and strongly increased prostate carcinoma cell growth. IMPLICATIONS: These genomic data reveal relevant miRNAs in prostate cancer that may have biomarker and therapeutic potential.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metástase Linfática/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Idoso , Biomarcadores , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias
13.
FEBS J ; 280(9): 2105-16, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23480797

RESUMO

Prostate cancer is a leading cause of cancer mortality in men. One of the distinct characteristics of prostate cancer is over-expression of the ERG proto-oncogene. The TMPRSS2-ERG gene fusion, the most common gene fusion, is found in approximately 50% of prostate cancer cases. We show that certain microRNAs are extensively deregulated in prostate cancer cell lines and primary clinical cancer samples. MicroRNAs are capable of modulating post-transcriptional gene expression via inhibition of protein synthesis. Independent target prediction methods have indicated that the 3' untranslated region of the ERG mRNA is a potential target of miR-145. miR-145 is consistently down-regulated in prostate cancer. Here we show that the ERG 3' untranslated region is a regulative target of miR-145 in vitro. Ectopic expression of miR-145 led to a reduction in expression of the ERG protein. We analyzed 26 prostate cancer samples and corresponding normal tissue. ERG protein expression was found to be elevated in the tumor samples, together with increased expression of several ERG isoforms. We identified ERG proteins of 35 and 24 kDa, which may represent unknown ERG splice variants. Analyses of miR-145 and ERG mRNA expression revealed a general down-regulation of miR-145 irrespective of the presence or absence of translocations involving ERG. This observation indicates that down-regulation of miR-145 may contribute to the increased expression of most ERG splice variants sharing the miR-145 target sequence in their 3' untranslated region.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Neoplasias da Próstata/metabolismo , Transativadores/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proto-Oncogene Mas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG , Regulação para Cima
14.
Int J Cancer ; 132(4): 775-84, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22815235

RESUMO

In primary prostate cancer (PCa), a major cause of cancer-related death in men, the expression of various microRNAs (miRNAs) is deregulated. We previously detected several miRNAs, for example, miR-24 and miR-22, as significantly downregulated in PCa (Szczyrba et al., Mol Cancer Res 2010;8:529-38). An in silico search predicted that zinc finger protein 217 (ZNF217) and importin 7 (IPO7) were potential target genes of these miRNAs. Additionally, for two genes that are deregulated in PCa (heterogeneous nuclear ribonucleoprotein K, hnRNP-K, and vascular endothelial growth factor A, VEGF-A), we identified two regulatory miRNAs, miR-205 and miR-29b. The regulation of the 3'-untranslated regions of the four genes by their respective miRNAs was confirmed by luciferase assays. As expected, the upregulation of ZNF217, hnRNP-K, VEGF-A and IPO7 could be verified at the protein level in the PCa cell lines LNCaP and DU145. ZNF217 and IPO7, which had not yet been studied in PCa, were analyzed in more detail. ZNF217 mRNA is overexpressed in primary PCa samples, and this overexpression translates to an elevated protein level. However, IPO7 was upregulated at the protein level alone. The inhibition of ZNF217 and IPO7 by siRNA resulted in reduced proliferation of the PCa cell lines. ZNF217 could thus be identified as an oncogene that is overexpressed in PCa and affects the growth of PCa cell lines, whereas the function of IPO7 remains to be elucidated in greater detail.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Carioferinas/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Idoso , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Carioferinas/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/genética , Regulação para Cima
15.
PLoS One ; 7(8): e42193, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870299

RESUMO

The Epstein-Barr virus (EBV) is an oncogenic human Herpes virus involved in the pathogenesis of nasal NK/T-cell lymphoma. EBV encodes microRNAs (miRNAs) and induces changes in the host cellular miRNA profile. MiRNAs are short non-coding RNAs of about 19-25 nt length that regulate gene expression by post-transcriptional mechanisms and are frequently deregulated in human malignancies including cancer. The microRNA profiles of EBV-positive NK/T-cell lymphoma, non-infected T-cell lymphoma and normal thymus were established by deep sequencing of small RNA libraries. The comparison of the EBV-positive NK/T-cell vs. EBV-negative T-cell lymphoma revealed 15 up- und 16 down-regulated miRNAs. In contrast, the majority of miRNAs was repressed in the lymphomas compared to normal tissue. We also identified 10 novel miRNAs from known precursors and two so far unknown miRNAs. The sequencing results were confirmed for selected miRNAs by quantitative Real-Time PCR (qRT-PCR). We show that the proinflammatory cytokine interleukin 1 alpha (IL1A) is a target for miR-142-3p and the oncogenic BCL6 for miR-205. MiR-142-3p is down-regulated in the EBV-positive vs. EBV-negative lymphomas. MiR-205 was undetectable in EBV-negative lymphoma and strongly down-regulated in EBV-positive NK/T-cell lymphoma as compared to thymus. The targets were confirmed by reporter assays and by down-regulation of the proteins by ectopic expression of the cognate miRNAs. Taken together, our findings demonstrate the relevance of deregulated miRNAs for the post-transcriptional gene regulation in nasal NK/T-cell lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Linfoma Extranodal de Células T-NK/metabolismo , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1alfa/biossíntese , Interleucina-1alfa/genética , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/virologia , Masculino , MicroRNAs/genética , RNA Neoplásico/genética , Análise de Sequência de RNA
16.
PLoS One ; 7(8): e42106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879910

RESUMO

The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular , DNA/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Imunoprecipitação , Metilação , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Sequências Repetitivas de Aminoácidos , Transfecção , Proteínas da Matriz Viral/genética , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Centrais de snRNP/metabolismo
17.
Cancer Med ; 1(2): 141-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23342264

RESUMO

MicroRNAs (miRNAs) are short 18-23 nucleotide long noncoding RNAs that posttranscriptionally regulate gene expression by binding to mRNA. Our previous miRNA profiling of diffuse large B-cell lymphoma (DLBCL) revealed a mutation in the seed sequence of miR-142-3p. Further analysis now showed that miR-142 was mutated in 11 (19.64%) of the 56 DLBCL cases. Of these, one case had a mutation in both alleles, with the remainder being heterozygous. Four mutations were found in the mature miR-142-5p, four in the mature miR-142-3p, and three mutations affected the miR-142 precursor. Two mutations in the seed sequence redirected miR-142-3p to the mRNA of the transcriptional repressor ZEB2 and one of them also targeted the ZEB1 mRNA. However, the other mutations in the mature miR-142-3p did not influence either the ZEB1 or ZEB2 3' untranslated region (3' UTR). On the other hand, the mutations affecting the seed sequence of miR-142-3p resulted in a loss of responsiveness in the 3' UTR of the known miR-142-3p targets RAC1 and ADCY9. In contrast to the mouse p300 gene, the human p300 gene was not found to be a target for miR-142-5p. In one case with a mutation of the precursor, we observed aberrant processing of the miR-142-5p. Our data suggest that the mutations in miR-142 probably lead to a loss rather than a gain of function. This is the first report describing mutations of a miRNA gene in a large percentage of a distinct lymphoma subtype.


Assuntos
Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular , Proteína p300 Associada a E1A/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Camundongos , Mutação , RNA Mensageiro/genética , Proteínas Repressoras/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
Biochim Biophys Acta ; 1809(11-12): 631-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21640213

RESUMO

The Epstein-Barr virus (EBV) is an oncogenic Herpes virus involved in the induction of a variety of human tumours. It was the first virus found to encode microRNAs (miRNAs). MiRNAs are short, non-coding RNAs that in most cases negatively regulate gene expression at the post-transcriptional level. EBV-transformed cells express at least 44 mature viral miRNAs that target viral and cellular genes. In addition, EBV-infection severely deregulates the miRNA profile of the host cell. The presently available information indicates that the virus uses its miRNAs to inhibit the apoptotic response of the infected cell as a means to establish a latent infection. Likewise, EBV-encoded miRNAs interfere in the expression of viral genes in order to mask the infected cell from the immune response. Cellular targets of viral miRNAs are involved in protein traffic within the cell and regulate innate immunity. MiRNA profiling of diffuse large B-cell lymphoma (DLBCL) and nasal NK/T-cell lymphoma (NKTL) showed that only 2% of the miRNAs are derived from the virus, while viral miRNAs comprise up to 20% of the total miRNA in nasopharyngeal carcinoma (NPC) and probably contribute to the formation or maintenance of NPC. The presence of viral miRNAs in exosomes raises the fascinating possibility that virus-infected cells regulate gene expression in the surrounding tissue to avert destruction by the immune system. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/metabolismo , Animais , Carcinoma/genética , Carcinoma/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Inativação Gênica , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma/genética , Linfoma/virologia , MicroRNAs/genética , Modelos Genéticos
19.
Int J Cancer ; 129(5): 1105-15, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21710493

RESUMO

Epstein-Barr virus (EBV) is a human tumour virus that efficiently growth-transforms primary human B-lymphocytes in vitro. The viral nuclear antigen 2 (EBNA2) is essential for immortalisation of B-cells and stimulates viral and cellular gene expression through interaction with DNA-bound transcription factors. Like its cellular homologue Notch, it associates with the DNA-bound repressor RBPJκ (CSL/CBF1) thereby converting RBPJκ into the active state. For instance, both EBNA2 and Notch activate the cellular HES1 promoter. In EBV-transformed lymphocytes, the RNA of the NP9 protein encoded by human endogenous retrovirus HERV-K(HML-2) Type 1 is strongly up-regulated. The NP9 protein is detectable both in EBV-positive Raji cells, a Burkitt's lymphoma cell line, and in IB4, an EBV-transformed human lymphoblastoid cell line. NP9 binds to LNX that forms a complex with the Notch regulator Numb. Therefore, the function of NP9 vis-à-vis Notch and EBNA2 was analysed. Here, we show that NP9 binds to EBNA2 and negatively affects the EBNA2-mediated activation of the viral C- and LMP2A promoters. In contrast, NP9 did neither interfere in the activation of the HES1 promoter by Notch nor the induction of the viral LMP1 promoter by EBNA2. In an electrophoretic mobility shift analysis, NP9 reduced the binding of EBNA2 to DNA-bound RBPJκ by about 50%. The down-regulation of EBNA2-activity by NP9 might represent a cellular defence mechanism against viral infection or could, alternatively, represent an adaptation of the virus to prevent excessive viral protein production that might otherwise be harmful for the infected cell.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene env/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Western Blotting , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Células COS , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Produtos do Gene env/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Luciferases/metabolismo , Linfócitos/metabolismo , Ligação Proteica , Receptor Notch1/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição HES-1 , Ativação Transcricional , Proteínas da Matriz Viral/genética
20.
Mol Cancer Res ; 9(6): 791-800, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21593139

RESUMO

Prostate carcinoma (CaP) is a leading cause of cancer-related death in men. We have previously determined the microRNA (miRNA) profile of primary CaP in comparison with nontumor prostate tissue. miRNAs are small, noncoding RNAs that inhibit protein synthesis on a posttranscriptional level by binding to the 3'-untranslated region (3'-UTR) of their target genes. In primary CaP tissue, we have previously found by miRNA sequencing that miR-375 and miR-200c were upregulated 9.1- and 4.5-fold, respectively. A computational analysis predicted the 3'-UTR of the SEC23A gene as a potential target for both miR-375 and miR-200c. Here, we show that the 3'-UTR of SEC23A mRNA is indeed a target for miR-375 and miR-200c and that both miRNAs downregulate Sec23A protein expression when ectopically expressed in human 293T cells. In primary samples of CaP, we found a direct correlation between reduction of SEC23A mRNA and overexpression of miR-375 but not of miR-200c. The reduced levels of Sec23A protein were inversely correlated to the increased amount of miR-375 in the LNCaP and DU145 CaP cell lines when compared with normal prostate fibroblasts. In primary CaP, we also detected decreased amounts of Sec23A protein when compared with corresponding normal prostate tissue. Ectopically overexpressed Sec23A in LNCaP and DU145 CaP cells significantly reduced the growth properties, indicating that Sec23A might play a role in the induction or growth of prostate carcinoma. Sec23A overexpression reduced cell growth but did not induce apoptosis, whereas inhibition of Sec23A stimulated cell proliferation.


Assuntos
Carcinoma/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Apoptose , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , MicroRNAs/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Transporte Vesicular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA