Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Endocr Pract ; 25(4): 379-393, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30657362

RESUMO

Objective: To clarify the selection of medical therapy following transsphenoidal surgery in patients with acromegaly, based on growth hormone (GH)/insulin-like growth factor 1 (IGF-1) response and glucometabolic control. Methods: We carried out a systematic literature review on three of the best studied and most practical predictive markers of the response to somatostatin analogues (SSAs): somatostatin receptor (SSTR) expression, tumor morphologic classification, and T2-weighted magnetic resonance imaging (MRI) signal intensity. Additional analyses focused on glucose metabolism in treated patients. Results: The literature survey confirmed significant associations of all three factors with SSA responsiveness. SSTR expression appears necessary for the SSA response; however, it is not sufficient, as approximately half of SSTR2-positive tumors failed to respond clinically to first-generation SSAs. MRI findings (T2-hypo-intensity) and a densely granulated phenotype also correlate with SSA efficacy, and are advantageous as predictive markers relative to SSTR expression alone. Glucometabolic control declines with SSA monotherapy, whereas GH receptor antagonist (GHRA) monotherapy may restore normoglycemia. Conclusion: We propose a decision tree to guide selection among SSAs, dopamine agonists (DAs), and GHRA for medical treatment of acromegaly in the postsurgical setting. This decision tree employs three validated predictive markers and other clinical considerations, to determine whether SSAs are appropriate first-line medical therapy in the postsurgical setting. DA treatment is favored in patients with modest IGF-1 elevation. GHRA treatment should be considered for patients with T2-hyperintense tumors with a sparsely granulated phenotype and/or low SSTR2 staining, and may also be favored for individuals with diabetes. Prospective analyses are required to test the utility of this therapeutic paradigm. Abbreviations: DA = dopamine agonist; DG = densely granulated; GH = growth hormone; GHRA = growth hormone receptor antagonist; HbA1c = glycated hemoglobin; IGF-1 = insulin-like growth factor-1; MRI = magnetic resonance imaging; SG = sparsely granulated; SSA = somatostatin analogue; SSTR = somatostatin receptor.


Assuntos
Acromegalia , Consenso , Hormônio do Crescimento Humano , Humanos , Fator de Crescimento Insulin-Like I , Estudos Prospectivos , Estudos Retrospectivos , Somatostatina
2.
Sci Rep ; 6: 23608, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005704

RESUMO

Obesity increases the risk for nonalcoholic steatohepatitis (NASH) and hepatocarcinogenesis. However, the underlying mechanisms involved in the disease process remain unclear. Recently, we have developed a transgenic obese mouse model (Mito-Ob) by prohibitin mediated mitochondrial remodeling in adipocytes. The Mito-Ob mice develop obesity in a sex-neutral manner, but obesity-associated adipose inflammation and metabolic dysregulation in a male sex-specific manner. Here we report that with aging, the male Mito-Ob mice spontaneously develop obesity-linked NASH and hepatocellular carcinoma (HCC). In contrast, the female Mito-Ob mice maintained normal glucose and insulin levels and did not develop NASH and HCC. The anti-inflammatory peptide ghrelin was significantly upregulated in the female mice and down regulated in the male mice compared with respective control mice. In addition, a reduction in the markers of mitochondrial content and function was found in the liver of male Mito-Ob mice with NASH/HCC development. We found that ERK1/2 signaling was significantly upregulated whereas STAT3 signaling was significantly down regulated in the tumors from Mito-Ob mice. These data provide a proof-of-concept that the metabolic and inflammatory status of the adipose tissue and their interplay at the systemic and hepatic level play a central role in the pathogenesis of obesity-linked NASH and HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Resistência à Insulina , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/imunologia , Proteínas Repressoras/deficiência , Animais , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Proibitinas , Fator de Transcrição STAT3/metabolismo , Caracteres Sexuais
3.
Am J Physiol Regul Integr Comp Physiol ; 292(5): R1926-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17218436

RESUMO

Adverse events during pregnancy, including prenatal ethanol (EtOH) exposure, are associated with insulin-resistant diabetes in male rat offspring, but it is unclear whether this is true for female offspring. We investigated whether prenatal EtOH exposure alters glucose metabolism in adult female rat offspring and whether this is associated with reduced in vivo insulin signaling in skeletal muscle. Female Sprague-Dawley rats were given EtOH, 4 g.kg(-1).day(-1) by gavage throughout pregnancy. Glucose tolerance test and hyperinsulinemic euglycemic clamp were performed, and insulin signaling was investigated in skeletal muscle, in adult female offspring. We gave insulin intravenously to these rats and determined the association of glucose transporter-4 with plasma membranes, as well as the phosphorylation of phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta. Although EtOH offspring had normal birth weight, they were overweight as adults and had fasting hyperglycemia, hyperinsulinemia, and reduced insulin-stimulated glucose uptake. After insulin treatment, EtOH-exposed rats had decreased membrane glucose transporter-4, PDK1, Akt, and PKCzeta in the gastrocnemius muscle, compared with control rats. Insulin stimulation of PDK1, Akt, and PKCzeta phosphorylation was also reduced. In addition, the expression of the protein tribbles-3 and the phosphatase enzyme activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which prevent Akt activation, were increased in muscle from EtOH-exposed rats. Female rat offspring exposed to EtOH in utero develop insulin-resistant diabetes in association with excessive PTEN and tribbles-3 signaling downstream of the phosphatidylinositol 3-kinase pathway in skeletal muscle, which may be a mechanism for the abnormal glucose tolerance.


Assuntos
Glicemia/efeitos dos fármacos , Etanol/toxicidade , Homeostase/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Envelhecimento , Animais , Peso Corporal , Comportamento Alimentar , Feminino , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA