Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(2): 100615, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687468

RESUMO

Background & Aims: Histological assessment of liver biopsies is the gold standard for diagnosis of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), despite its well-established limitations. Therefore, non-invasive biomarkers that can offer an integrated view of the liver are needed to improve diagnosis and reduce sampling bias. Hepatic stellate cells (HSCs) are central in the development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods: We performed RNA-sequencing on liver biopsies from a histologically characterised cohort of obese patients (n = 30, BMI >35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings using single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results: Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared to no-NAFLD (p.adj <0.001). Single-cell RNA-sequencing data indicated that SMOC2 was primarily expressed by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p <0.001), with a predictive accuracy of AUROC 0.88. Conclusions: Increased SMOC2 in plasma appears to reflect HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH. Impact and implications: Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the most common forms of chronic liver diseases. Currently, liver biopsies are the gold standard for diagnosing NAFLD. Blood-based biomarkers to complement liver biopsies for diagnosis of NAFLD are required. We found that activated hepatic stellate cells, a cell type central to NAFLD pathogenesis, upregulate expression of the secreted protein SPARC-related modular calcium-binding protein 2 (SMOC2). SMOC2 was elevated in blood samples from patients with NASH and may hold promise as a blood-based biomarker for the diagnosis of NAFLD.

2.
Hepatology ; 77(2): 558-572, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35712786

RESUMO

BACKGROUND AND AIMS: Reliable noninvasive biomarkers are an unmet clinical need for the diagnosis of NASH. This study investigates the diagnostic accuracy of the circulating triggering receptor expressed on myeloid cells 2 (plasma TREM2) as a biomarker for NASH in patients with NAFLD and elevated liver stiffness. APPROACH AND RESULTS: We collected cross-sectional, clinical data including liver biopsies from a derivation ( n = 48) and a validation cohort ( n = 170) of patients with elevated liver stiffness measurement (LSM ≥ 8.0 kPa). Patients with NAFLD activity scores (NAS) ≥4 were defined as having NASH. Plasma TREM2 levels were significantly elevated in patients with NASH of the derivation cohort, with an area under the receiver operating characteristics curve (AUROC) of 0.92 (95% confidence interval [CI], 0.84-0.99). In the validation cohort, plasma TREM2 level increased approximately two-fold in patients with NASH, and a strong diagnostic accuracy was confirmed (AUROC, 0.83; 95% CI, 0.77-0.89; p < 0.0001). Plasma TREM2 levels were associated with the individual histologic features of NAS: steatosis, lobular inflammation, and ballooning ( p < 0.0001), but only weakly with fibrosis stages. Dual cutoffs for rule-in and rule-out were explored: a plasma TREM2 level of ≤38 ng/ml was found to be an optimal NASH rule-out cutoff (sensitivity 90%; specificity 52%), whereas a plasma TREM2 level of ≥65 ng/ml was an optimal NASH rule-in cutoff (specificity 89%; sensitivity 54%). CONCLUSIONS: Plasma TREM2 is a plausible individual biomarker that can rule-in or rule-out the presence of NASH with high accuracy and thus has the potential to reduce the need for liver biopsies and to identify patients who are eligible for clinical trials in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Cirrose Hepática/patologia , Estudos Transversais , Biomarcadores , Biópsia , Glicoproteínas de Membrana , Receptores Imunológicos
3.
Front Immunol ; 14: 1320614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259467

RESUMO

Murine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models. Additionally, other parameters that are important for cancer progression, such as collagen content and mechanical tissue stiffness across syngeneic tumor models have not previously been reported. Here, we compare the TME of tumors derived from six common syngeneic tumor models. Using flow cytometry and transcriptomic analyses, we show that strikingly unique TMEs are formed by the different cancer cell lines. The differences are reflected as changes in abundance and phenotype of myeloid, lymphoid, and stromal cells in the tumors. Gene expression analyses support the different cellular composition of the TMEs and indicate that distinct immunosuppressive mechanisms are employed depending on the tumor model. Cancer-associated fibroblasts (CAFs) also acquire very different phenotypes across the tumor models. These differences include differential expression of genes encoding extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and immunosuppressive factors. The gene expression profiles suggest that CAFs can contribute to the formation of an immunosuppressive TME, and flow cytometry analyses show increased PD-L1 expression by CAFs in the immunogenic tumor models, MC38 and CT26. Comparison with CAF subsets identified in other studies shows that CAFs are skewed towards specific subsets depending on the model. In athymic mice lacking tumor-infiltrating cytotoxic T cells, CAFs express lower levels of PD-L1 and lower levels of fibroblast activation markers. Our data underscores that CAFs can be involved in the formation of an immunosuppressive TME.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Proteínas da Matriz Extracelular , Imunossupressores , Camundongos Nus , Fenótipo , Neoplasias/genética
4.
J Immunother Cancer ; 10(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36316062

RESUMO

BACKGROUND: High expression of the metabolic enzyme arginase-2 (ARG2) by cancer cells, regulatory immune cells, or cells of the tumor stroma can reduce the availability of arginine (L-Arg) in the tumor microenvironment (TME). Depletion of L-Arg has detrimental consequences for T cells and leads to T-cell dysfunction and suppression of anticancer immune responses. Previous work from our group has demonstrated the presence of proinflammatory ARG2-specific CD4 T cells that inhibited tumor growth in murine models on activation with ARG2-derived peptides. In this study, we investigated the natural occurrence of ARG2-specific CD8 T cells in both healthy donors (HDs) and patients with cancer, along with their immunomodulatory capabilities in the context of the TME. MATERIALS AND METHODS: A library of 15 major histocompatibility complex (MHC) class I-restricted ARG2-derived peptides were screened in HD peripheral blood mononuclear cells using interferon gamma (IFN-γ) ELISPOT. ARG2-specific CD8 T-cell responses were identified using intracellular cytokine staining and ARG2-specific CD8 T-cell cultures were established by enrichment and rapid expansion following in vitro peptide stimulation. The reactivity of the cultures toward ARG2-expressing cells, including cancer cell lines and activated regulatory T cells (Tregs), was assessed using IFN-γ ELISPOT and a chromium release assay. The Treg signature was validated based on proliferation suppression assays, flow cytometry and quantitative reverse transcription PCR (RT-qPCR). In addition, vaccinations with ARG2-derived epitopes were performed in the murine Pan02 tumor model, and induction of ARG2-specific T-cell responses was evaluated with IFN-γ ELISPOT. RNAseq and subsequent GO-term and ImmuCC analysis was performed on the tumor tissue. RESULTS: We describe the existence of ARG2-specific CD8+ T cells and demonstrate these CD8+ T-cell responses in both HDs and patients with cancer. ARG2-specific T cells recognize and react to an ARG2-derived peptide presented in the context of HLA-B8 and exert their cytotoxic function against cancer cells with endogenous ARG2 expression. We demonstrate that ARG2-specific T cells can specifically recognize and react to activated Tregs with high ARG2 expression. Finally, we observe tumor growth suppression and antitumorigenic immunomodulation following ARG2 vaccination in an in vivo setting. CONCLUSION: These findings highlight the ability of ARG2-specific T cells to modulate the immunosuppressive TME and suggest that ARG2-based immunomodulatory vaccines may be an interesting option for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Arginase/metabolismo , Leucócitos Mononucleares , Antígenos de Histocompatibilidade Classe I , Interferon gama/metabolismo , Peptídeos/metabolismo , Microambiente Tumoral
5.
Oncogene ; 41(9): 1364-1375, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017664

RESUMO

The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.


Assuntos
Antagonistas Adrenérgicos beta , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Propranolol/farmacologia
6.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36600556

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is associated with very poor survival, making it the third and fourth leading cause of all cancer-related deaths in the USA and European Union, respectively. The tumor microenvironment (TME) in PDAC is highly immunosuppressive and desmoplastic, which could explain the limited therapeutic effect of immunotherapy in PDAC. One of the key molecules that contributes to immunosuppression and fibrosis is transforming growth factor-ß (TGFß). The aim of this study was to target the immunosuppressive and fibrotic TME in PDAC using a novel immune modulatory vaccine with TGFß-derived peptides in a murine model of pancreatic cancer. METHODS: C57BL/6 mice were subcutaneously inoculated with Pan02 PDAC cells. Mice were treated with TGFß1-derived peptides (major histocompatibility complex (MHC)-I and MHC-II-restricted) adjuvanted with Montanide ISA 51VG. The presence of treatment-induced TGFß-specific T cells was assessed by ELISpot (enzyme-linked immunospot). Changes in the immune infiltration and gene expression profile in tumor samples were characterized by flow cytometry, reverse transcription-quantitative PCR (RT-qPCR), and bulk RNA sequencing. RESULTS: Treatment with immunogenic TGFß-derived peptides was safe and controlled tumor growth in Pan02 tumor-bearing mice. Enlargement of tumor-draining lymph nodes in vaccinated mice positively correlated to the control of tumor growth. Analysis of immune infiltration and gene expression in Pan02 tumors revealed that TGFß-derived peptide vaccine increased the infiltration of CD8+ T cells and the intratumoral M1/M2 macrophage ratio, it increased the expression of genes involved in immune activation and immune response to tumors, and it reduced the expression of myofibroblast-like cancer-associated fibroblast (CAF)-related genes and genes encoding fibroblast-derived collagens. Finally, we confirmed that TGFß-derived peptide vaccine actively modulated the TME, as the ability of T cells to proliferate was restored when exposed to tumor-conditioned media from vaccinated mice compared with media from untreated mice. CONCLUSION: This study demonstrates the antitumor activity of TGFß-derived multipeptide vaccination in a murine tumor model of PDAC. The data suggest that the vaccine targets immunosuppression and fibrosis in the TME by polarizing the cellular composition towards a more pro-inflammatory phenotype. Our findings support the feasibility and potential of TGFß-derived peptide vaccination as a novel immunotherapeutic approach to target immunosuppression in the TME.


Assuntos
Vacinas Anticâncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Linfócitos T CD8-Positivos , Fator de Crescimento Transformador beta , Microambiente Tumoral , Modelos Animais de Doenças , Linhagem Celular Tumoral , Vacinas de Subunidades Antigênicas/uso terapêutico , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Imunossupressores/uso terapêutico , Imunidade , Fibrose , Neoplasias Pancreáticas
7.
Front Endocrinol (Lausanne) ; 11: 572981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133019

RESUMO

Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.


Assuntos
Redes Reguladoras de Genes , Fígado/metabolismo , Receptores de Glucocorticoides/fisiologia , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos/fisiologia , Proteína Forkhead Box O1/fisiologia , Humanos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Fator de Transcrição STAT5/fisiologia , Transdução de Sinais/fisiologia
8.
J Immunol ; 205(5): 1461-1472, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839214

RESUMO

Tumor-associated macrophages (TAMs) support tumor growth by suppressing the activity of tumor-infiltrating T cells. Consistently, TAMs are considered a major limitation for the efficacy of cancer immunotherapy. However, the molecular reason behind the acquisition of an immunosuppressive TAM phenotype is not fully clarified. During tumor growth, the extracellular matrix (ECM) is degraded and substituted with a tumor-specific collagen-rich ECM. The collagen density of this tumor ECM has been associated with poor patient prognosis but the reason for this is not well understood. In this study, we investigated whether the collagen density could modulate the immunosuppressive activity of TAMs. The murine macrophage cell line RAW 264.7 was three-dimensionally cultured in collagen matrices of low and high collagen densities mimicking healthy and tumor tissue, respectively. Collagen density did not affect proliferation or viability of the macrophages. However, whole-transcriptome analysis revealed a striking response to the surrounding collagen density, including the regulation of immune regulatory genes and genes encoding chemokines. These transcriptional changes were shown to be similar in murine bone marrow-derived macrophages and TAMs isolated from murine tumors. Strikingly, coculture assays with primary T cells showed that macrophages cultured in high-density collagen were less efficient at attracting cytotoxic T cells and capable of inhibiting T cell proliferation more than macrophages cultured in low-density collagen. Our study demonstrates that a high collagen density can instruct macrophages to acquire an immunosuppressive phenotype. This mechanism could reduce the efficacy of immunotherapy and explain the link between high collagen density and poor prognosis.


Assuntos
Colágeno/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/imunologia , Quimiocinas/imunologia , Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transcrição Gênica/imunologia , Microambiente Tumoral/imunologia
9.
J Immunother Cancer ; 7(1): 68, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867051

RESUMO

BACKGROUND: Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities. METHODS: T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis. RESULTS: T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-ß signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. CONCLUSIONS: Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.


Assuntos
Colágeno/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Ativação Linfocitária/genética , Linfócitos do Interstício Tumoral/patologia , Neoplasias/patologia , Microambiente Tumoral/genética
10.
Cell Rep ; 21(13): 3662-3671, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281816

RESUMO

Physiologic turnover of interstitial collagen is mediated by a sequential pathway in which collagen is fragmented by pericellular collagenases, endocytosed by collagen receptors, and routed to lysosomes for degradation by cathepsins. Here, we use intravital microscopy to investigate if malignant tumors, which are characterized by high rates of extracellular matrix turnover, utilize a similar collagen degradation pathway. Tumors of epithelial, mesenchymal, or neural crest origin all display vigorous endocytic collagen degradation. The cells engaged in this process are identified as tumor-associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation.


Assuntos
Movimento Celular , Colágeno/metabolismo , Endocitose , Inflamação/patologia , Macrófagos/patologia , Monócitos/patologia , Neoplasias/patologia , Proteólise , Animais , Polaridade Celular , Matriz Extracelular/metabolismo , Lectinas Tipo C , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose , Camundongos Endogâmicos C57BL , Neoplasias/genética , Ratos , Receptores CCR2/metabolismo , Receptores de Superfície Celular , Transcriptoma/genética
11.
Cell ; 165(3): 593-605, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27062924

RESUMO

The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Cromatina/metabolismo , Desoxirribonucleases/metabolismo , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição/metabolismo
12.
Biophys J ; 109(6): 1227-39, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26278180

RESUMO

The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a complex is dictated by its structure. In addition, it may help us estimate the effects of mutations on GR interactions and signaling.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Modelos Moleculares , Receptores de Glucocorticoides/metabolismo , Algoritmos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Computadores Analógicos , Dimerização , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Ratos , Receptores de Glucocorticoides/química , Transfecção
13.
Cancer Res ; 73(16): 5130-9, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23803465

RESUMO

Cross-talk between estrogen receptors (ER) and glucocorticoid receptors (GR) has been shown to contribute to the development and progression of breast cancer. Importantly, the ER and GR status in breast cancer cells is a significant factor in determining the outcome of the disease. However, mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors. The unveiling of this mechanism is important for understanding cellular interactions between ER and GR and may represent a general mechanism for cross-talk between nuclear receptors in human disease.


Assuntos
Cromatina/genética , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , DNA/genética , Genoma , Camundongos , Ligação Proteica , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta
14.
Mol Endocrinol ; 23(6): 794-808, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19282365

RESUMO

We have previously shown that adenoviral expression of peroxisome proliferator-activated receptors (PPARs) leads to rapid establishment of transcriptionally active complexes and activation of target gene expression within 5-8 h after transduction. Here we have used the adenoviral delivery system combined with expression array analysis to identify novel putative PPARgamma target genes in murine fibroblasts and to determine the role of the A/B-domain in PPARgamma-mediated transactivation of genomic target genes. Of the 257 genes found to be induced by PPARgamma2 expression, only 25 displayed A/B-domain dependency, i.e. significantly reduced induction in the cells expressing the truncated PPARgamma lacking the A/B-domain (PPARgammaCDE). Nine of the 25 A/B-domain-dependent genes were involved in lipid storage, and in line with this, triglyceride accumulation was considerably decreased in the cells expressing PPARgammaCDE compared with cells expressing full-length PPARgamma2. Using chromatin immunoprecipitation, we demonstrate that PPARgamma binding to genomic target sites and recruitment of the mediator component TRAP220/MED1/PBP/DRIP205 is not affected by the deletion of the A/B-domain. By contrast, the PPARgamma-mediated cAMP response element-binding protein (CREB)-binding protein (CBP) and p300 recruitment to A/B-domain-dependent target genes is compromised by deletion of the A/B-domain. These results indicate that the A/B-domain of PPARgamma2 is specifically involved in the recruitment or stabilization of CBP- and p300-containing cofactor complexes to a subset of target genes.


Assuntos
PPAR gama/química , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Adenoviridae/genética , Animais , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Genoma/genética , Humanos , Metabolismo dos Lipídeos , Subunidade 1 do Complexo Mediador , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Polimerase II/metabolismo , Elementos de Resposta/genética , Ativação Transcricional , Transdução Genética
15.
Endocrinology ; 149(4): 1840-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18096664

RESUMO

The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip60 protein is recruited to PPARgamma target genes in mature 3T3-L1 adipocytes but not in preadipocytes, indicating that Tip60 requires PPARgamma for its recruitment to PPARgamma target genes. Importantly, we show that in common with disruption of PPARgamma function, small interfering RNA-mediated reduction of Tip60 protein impairs differentiation of 3T3-L1 preadipocytes. Taken together, these findings qualify the acetyltransferase Tip60 as a novel adipogenic factor.


Assuntos
Adipogenia , Histona Acetiltransferases/fisiologia , PPAR gama/fisiologia , Células 3T3-L1 , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Lisina Acetiltransferase 5 , Camundongos , Dados de Sequência Molecular , PPAR gama/química , Estrutura Terciária de Proteína , Transcrição Gênica
16.
Mol Cell Biol ; 26(15): 5698-714, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847324

RESUMO

Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARgamma2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARgamma2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (alpha, gamma, and beta/delta), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/metabolismo , Ativação Transcricional , Transgenes , Adenoviridae/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA