Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471818

RESUMO

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Vibrio cholerae , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo
2.
Nature ; 622(7984): 826-833, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853119

RESUMO

CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.


Assuntos
Trifosfato de Adenosina , Bacteroides fragilis , Sistemas CRISPR-Cas , Escherichia coli , S-Adenosilmetionina , Sistemas do Segundo Mensageiro , Trifosfato de Adenosina/metabolismo , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Sistemas CRISPR-Cas/fisiologia , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA/imunologia , RNA/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Nucleic Acids Res ; 48(8): 4418-4434, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198888

RESUMO

Type III CRISPR-Cas prokaryotic immune systems provide anti-viral and anti-plasmid immunity via a dual mechanism of RNA and DNA destruction. Upon target RNA interaction, Type III crRNP effector complexes become activated to cleave both target RNA (via Cas7) and target DNA (via Cas10). Moreover, trans-acting endoribonucleases, Csx1 or Csm6, can promote the Type III immune response by destroying both invader and host RNAs. Here, we characterize how the RNase and DNase activities associated with Type III-B immunity in Pyrococcus furiosus (Pfu) are regulated by target RNA features and second messenger signaling events. In vivo mutational analyses reveal that either the DNase activity of Cas10 or the RNase activity of Csx1 can effectively direct successful anti-plasmid immunity. Biochemical analyses confirmed that the Cas10 Palm domains convert ATP into cyclic oligoadenylate (cOA) compounds that activate the ribonuclease activity of Pfu Csx1. Furthermore, we show that the HEPN domain of the adenosine-specific endoribonuclease, Pfu Csx1, degrades cOA signaling molecules to provide an auto-inhibitory off-switch of Csx1 activation. Activation of both the DNase and cOA generation activities require target RNA binding and recognition of distinct target RNA 3' protospacer flanking sequences. Our results highlight the complex regulatory mechanisms controlling Type III CRISPR immunity.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Desoxirribonucleases/metabolismo , Endorribonucleases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/química , Domínio Catalítico , Endorribonucleases/química , Plasmídeos , Domínios Proteicos , Pyrococcus furiosus/genética , Pyrococcus furiosus/imunologia , Pyrococcus furiosus/metabolismo , Ribonucleoproteínas/metabolismo , Sistemas do Segundo Mensageiro
4.
Nature ; 577(7791): 572-575, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942067

RESUMO

The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA)1,2 and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP)3-5. Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain6, sculpting a powerful antiviral response7-10 that can drive viruses to extinction7,8. Cyclic nucleotides are increasingly implicated in host-pathogen interactions11-13. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA4). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA4 specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA4 signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.


Assuntos
Sistemas CRISPR-Cas/imunologia , Endonucleases/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Sulfolobus/virologia , Proteínas Virais/metabolismo , Vírus/enzimologia , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , DNA Viral/metabolismo , Endonucleases/química , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Filogenia , Transdução de Sinais , Sulfolobus/genética , Sulfolobus/imunologia , Sulfolobus/metabolismo , Proteínas Virais/química , Proteínas Virais/classificação , Vírus/imunologia
5.
Nucleic Acids Res ; 47(17): 9259-9270, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31392987

RESUMO

The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.


Assuntos
Nucleotídeos de Adenina/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mycobacterium tuberculosis/genética , Oligorribonucleotídeos/genética , Imunidade Adaptativa/imunologia , Nucleotídeos de Adenina/biossíntese , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Sequências Repetitivas Dispersas/genética , Sequências Repetitivas Dispersas/imunologia , Mycobacterium tuberculosis/imunologia , Oligorribonucleotídeos/biossíntese , Células Procarióticas/imunologia , Clivagem do RNA/genética , Clivagem do RNA/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
J Mol Biol ; 431(15): 2894-2899, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31071326

RESUMO

Cyclic oligoadenylate (cOA) secondary messengers are generated by type III CRISPR systems in response to viral infection. cOA allosterically activates the CRISPR ancillary ribonucleases Csx1/Csm6, which degrade RNA non-specifically using a HEPN (Higher Eukaryotes and Prokaryotes, Nucleotide binding) active site. This provides effective immunity but can also lead to growth arrest in infected cells, necessitating a means to deactivate the ribonuclease once viral infection has been cleared. In the crenarchaea, dedicated ring nucleases degrade cA4 (cOA consisting of 4 AMP units), but the equivalent enzyme has not been identified in bacteria. We demonstrate that, in Thermus thermophilus HB8, the uncharacterized protein TTHB144 is a cA4-activated HEPN ribonuclease that also degrades its activator. TTHB144 binds and degrades cA4 at an N-terminal CARF (CRISPR-associated Rossman fold) domain. The two activities can be separated by site-directed mutagenesis. TTHB144 is thus the first example of a self-limiting CRISPR ribonuclease.


Assuntos
Nucleotídeos de Adenina/química , Oligorribonucleotídeos/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Thermus thermophilus/enzimologia , Regulação Alostérica , Sistemas CRISPR-Cas , Domínio Catalítico , Modelos Moleculares , Mutagênese Sítio-Dirigida , RNA/química , RNA/metabolismo , Estabilidade de RNA , Ribonuclease III/química , Sistemas do Segundo Mensageiro , Thermus thermophilus/genética
7.
Methods Enzymol ; 616: 191-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691643

RESUMO

Type III CRISPR effector complexes utilize a bound CRISPR RNA (crRNA) to detect the presence of RNA from invading mobile genetic elements in the cell. This RNA binding results in the activation of two enzymatic domains of the Cas10 subunit-the HD nuclease domain, which degrades DNA, and PALM/cyclase domain. The latter synthesizes cyclic oligoadenylate (cOA) molecules by polymerizing ATP, and cOA acts as a second messenger in the cell, switching on the antiviral response by activating host ribonucleases and other proteins. In this chapter, we focus on the methods required to study the biochemistry of this recently discovered cOA signaling pathway. We cover protein expression and purification, synthesis of cOA and its linear analogues, kinetic analysis of cOA synthesis and cOA-stimulated ribonuclease activity, and small molecule detection and identification with thin-layer chromatography and mass spectrometry. The methods described are based on our recent studies of the type III CRISPR system in Sulfolobus solfataricus, but are widely applicable to other type III systems.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Oligorribonucleotídeos/metabolismo , Sulfolobus solfataricus/metabolismo , Nucleotídeos de Adenina/genética , Proteínas Arqueais/genética , Proteínas Associadas a CRISPR/genética , Clonagem Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Cinética , Oligorribonucleotídeos/genética , Sistemas do Segundo Mensageiro , Transdução de Sinais , Sulfolobus solfataricus/genética
8.
Nature ; 562(7726): 277-280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30232454

RESUMO

The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids1-3. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA4,5. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/classificação , Sistemas CRISPR-Cas/genética , Endorribonucleases/química , Endorribonucleases/metabolismo , Oligorribonucleotídeos/metabolismo , Sulfolobus solfataricus/enzimologia , Proteínas Associadas a CRISPR/metabolismo , Endorribonucleases/genética , Endorribonucleases/isolamento & purificação , Cinética , Modelos Moleculares , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sistemas do Segundo Mensageiro , Sulfolobus solfataricus/genética
9.
Elife ; 72018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29963983

RESUMO

The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.


Assuntos
Nucleotídeos de Adenina/biossíntese , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Oligorribonucleotídeos/biossíntese , Vírus de RNA/genética , RNA Viral/genética , Sulfolobus solfataricus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Oligonucleotídeos Fosforotioatos/farmacologia , Clivagem do RNA , Vírus de RNA/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sulfolobus solfataricus/efeitos dos fármacos , Sulfolobus solfataricus/imunologia , Sulfolobus solfataricus/metabolismo , Fatores de Tempo
10.
J Am Chem Soc ; 133(39): 15288-91, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21861518

RESUMO

The pacidamycins belong to a class of antimicrobial nucleoside antibiotics that act by inhibiting the clinically unexploited target translocase I, a key enzyme in peptidoglycan assembly. As with other nucleoside antibiotics, the pacidamycin 4',5'-dehydronucleoside portion is an essential pharmacophore. Here we show that the biosynthesis of the pacidamycin nucleoside in Streptomyces coeruleorubidus proceeds through three steps from uridine. The transformations involve oxidation of the 5'-alcohol by Pac11, transamination of the resulting aldehyde by Pac5, and dehydration by the Cupin-domain protein Pac13.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Peptídeos/química , Peptídeos/metabolismo , Streptomyces/metabolismo , Uridina/química , Família Multigênica , Streptomyces/genética
11.
Bioeng Bugs ; 2(4): 218-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829097

RESUMO

There is an urgent need for new antibiotics with resistance continuing to emerge toward existing classes. The pacidamycin antibiotics possess a novel scaffold and exhibit unexploited bioactivity rendering them attractive research targets. We recently reported the first identification of a biosynthetic cluster encoding uridyl peptide antibiotic assembly and the engineering of pacidamycin biosynthesis into a heterologous host. We report here our methods toward identifying the biosynthetic cluster. Our initial experiments employed conventional methods of probing a cosmid library using PCR and Southern blotting, however it became necessary to adopt a state-of-the-art genome scanning  and in silico hybridization approach  to pin point the cluster. Here we describe our "real" and "virtual" probing methods and contrast the benefits and pitfalls of each approach. 


Assuntos
Antibacterianos/metabolismo , Genes Bacterianos/genética , Família Multigênica/genética , Peptídeos/metabolismo , Nucleosídeos de Pirimidina/biossíntese , Southern Blotting , Estrutura Molecular , Reação em Cadeia da Polimerase
12.
Proteins ; 79(7): 2181-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538548

RESUMO

Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9ß- and C9α-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9and 2.3 Å, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.


Assuntos
Metiltransferases/química , Mitomicina/química , S-Adenosil-Homocisteína/química , Sequência de Aminoácidos , Proteínas de Bactérias , Sítios de Ligação , Cristalografia por Raios X , Metiltransferases/metabolismo , Mitomicina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Adenosil-Homocisteína/metabolismo , Alinhamento de Sequência , Streptomyces/enzimologia , Homologia Estrutural de Proteína
13.
Chembiochem ; 11(12): 1700-9, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20665770

RESUMO

The pacidamycins are antimicrobial nucleoside antibiotics produced by Streptomyces coeruleorubidus that inhibit translocase I, an essential bacterial enzyme yet to be clinically targeted. The novel pacidamycin scaffold is composed of a pseudopeptide backbone linked by a unique exocyclic enamide to an atypical 3'-deoxyuridine nucleoside. In addition, the peptidyl chain undergoes a double inversion caused by the incorporation of a diamino acid residue and a rare internal ureido moiety. The pacidamycin gene cluster was identified and sequenced, thereby providing the first example of a biosynthetic cluster for a member of the uridyl peptide family of antibiotics. Analysis of the 22 ORFs provided an insight into the biosynthesis of the unique structural features of the pacidamycins. Heterologous expression in Streptomyces lividans resulted in the production of pacidamycin D and the newly identified pacidamycin S, thus confirming the identity of the pacidamycin biosynthetic gene cluster. Identification of this cluster will enable the generation of new uridyl peptide antibiotics through combinatorial biosynthesis. The concise cluster will provide a useful model system through which to gain a fundamental understanding of the way in which nonribosomal peptide synthetases interact.


Assuntos
Família Multigênica , Nucleosídeos de Pirimidina/biossíntese , Streptomyces/metabolismo , Sequência de Bases , Clonagem Molecular , DNA/química , DNA/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Reação em Cadeia da Polimerase , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/genética , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/química , Streptomyces/genética
14.
Org Biomol Chem ; 8(14): 3128-9, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20514371

RESUMO

Feeding phenylalanine analogues to Streptomyces coeruleorubidus reveals the remarkable steric and electronic flexibility of this biosynthetic pathway and leads to the generation of a series of new halopacidamycins.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Peptídeos/química , Peptídeos/metabolismo , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/metabolismo , Antibacterianos/metabolismo , Isomerismo , Nucleosídeos de Pirimidina/biossíntese , Streptomyces/metabolismo , Especificidade por Substrato
15.
Org Lett ; 11(4): 791-4, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19161340

RESUMO

Beyond the identification of 3-amino-5-hydroxybenzoic acid (AHBA) and D-glucosamine as biosynthetic precursors to mitomycin C (5) and FR900482 (6), little is known about the pathway Nature uses to prepare these antitumor antibiotics. To gain some insight into their biosynthesis, amino acids 1 and 2 as well as C-2 N-acetylated derivatives 3 and 4 were prepared. Preparation of these putative biosynthetic intermediates and N-acetylcysteamine thioester analogues 28 and 29 should enable confirmation of their involvement in FR900482 and mitomycin C biosynthesis.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Mitomicina/biossíntese , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Mitomicina/química , Mitomicina/farmacologia , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/química , Oxazinas/farmacologia , Estereoisomerismo , Streptomyces/química
16.
J Am Chem Soc ; 129(20): 6470-6, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17461583

RESUMO

Mitomycins are bioreductively activated DNA-alkylating agents. One member of this family, mitomycin C, is in clinical use as part of combination therapy for certain solid tumors. The cytotoxicity displayed by mitomycins is dependent on their electrochemical potential which, in turn, is governed in part by the substituents of the quinone moiety. In this paper we describe studies on the biogenesis of the quinone methoxy group present in mitomycins A and B. An engineered Streptomyces lavendulae strain in which the mmcR methyltransferase gene had been deleted failed to produce the three mitomycins (A, B, and C) that are typically isolated from the wild type organism. Analysis of the culture extracts from the mmcR-deletion mutant strain revealed that two new metabolites, 7-demethylmitomycin A and 7-demethylmitomycin B, had accumulated instead. Production of mitomycins A and C or mitomycin B was selectively restored upon supplementing the culture medium of a S. lavendulae strain unable to produce the key precursor 3-amino-5-hydroxybenzoate with either 7-demethylmitomycin A or 7-demethylmitomycin B, respectively. MmcR methyltransferase obtained by cloning and overexpression of the corresponding mmcR gene was shown to catalyze the 7-O-methylation of both C9beta- and C9alpha-configured 7-hydroxymitomycins in vitro. This study provides direct evidence for the catalytic role of MmcR in formation of the 7-OMe group that is characteristic of mitomycins A and B and demonstrates the prerequisite of 7-O-methylation for the production of the clinical agent mitomycin C.


Assuntos
Mitomicinas/biossíntese , Mitomicinas/química , Catálise , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Estrutura Molecular , Mutação/genética , Streptomyces/genética , Streptomyces/metabolismo
17.
J Am Chem Soc ; 128(3): 724-5, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16417354

RESUMO

Rebeccamycin is a member of the family of indolocarbazole antibiotics with broad spectrum antitumor activity. The indolocarbazole framework is derived from two molecules of tryptophan, but very little is known about the enzymes involved in rebeccamycin biosynthesis. Here, we show that RebD is responsible for all catalytic steps forming the central pyrrole ring of chlorochromopyrrolic acid from two molecules of chloroindolepyruvic acid. This transformation does not require any additional cofactors and constitutes the first step of bis-indole formation in the biosynthesis of rebeccamycin.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/metabolismo , Carbazóis/metabolismo , Hemeproteínas/metabolismo , Indóis/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Ligantes de Grupo Heme , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA