Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Cancer ; 74(1): 194-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33522303

RESUMO

Flavanols are metabolized by the gut microbiota to bioavailable metabolites, and the absorbed fraction is excreted primarily via urine. Uroepithelial cells are thus a potential site of activity due to exposure to high concentrations of these compounds. Chemoprevention by flavanols may be partly due to these metabolites. In Vitro work in this area relies on a limited pool of commercially available microbial metabolites, and little has been done in bladder cancer. The impact of physiologically relevant mixtures of flavanols and their metabolites remains unknown. Rats were fed various flavanols and urine samples, approximating the bioavailable metabolome, were collected. Urines were profiled by UPLC-MS/MS, and their anti-proliferative activities were assayed In Vitro in four bladder cancer models. Significant interindividual variability was observed for composition and proliferation. Microbial metabolite concentrations (valerolactones, phenylalkyl acids and hippuric acids) were positively associated with reduced bladder cancer proliferation In Vitro, while native flavanols were poorly correlated with activity. These results suggest that microbial metabolites may be responsible for chemoprevention in uroepithelial cells following flavanol consumption. This highlights the potential to use individual genetics and microbial metabotyping to design personalized dietary interventions for cancer prevention and/or adjuvant therapy to reduce bladder cancer incidence and improve outcomes.


Assuntos
Microbioma Gastrointestinal , Neoplasias da Bexiga Urinária , Animais , Cromatografia Líquida , Polifenóis/análise , Ratos , Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária/tratamento farmacológico
2.
Prostate ; 81(15): 1235-1251, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492133

RESUMO

BACKGROUND: To ensure replicative immortality in cancer, telomeres must be maintained through activation of telomere maintenance mechanisms (TMMs) that are dependent on telomerase or the alternative lengthening of telomeres (ALT) pathway. Although TMM pathways have traditionally been considered to be mutually exclusive, ALT hallmarks have been identified in cancers defined as being telomerase-positive, supporting TMM coexistence. In castration-resistant prostate cancer (CRPC), in vitro models were thought to be universally dependent on telomerase as the primary TMM; however, CRPC models with androgen receptor (AR) loss demonstrate ALT hallmarks with limited telomerase activity and require ALT-associated PML bodies (APBs) for sustained telomere maintenance. The TMM coexistence in AR-negative CRPC is reliant on the ALT regulator protein, SLX4IP. METHODS: To identify the regions of SLX4IP responsible for the induction of APBs and telomere preservation in CRPC models, five 3xFLAG-tagged SLX4IP constructs were designed and stably introduced into parental C4-2B, DU145, and PC-3 cells. Once generated, these cell lines were interrogated for APB abundance and SLX4IP construct localization via immunofluorescence-fluorescence in situ hybridization (IF-FISH) and coimmunoprecipitation experiments for telomeric localization. Similarly, PC-3 cells with endogenous SLX4IP knockdown and SLX4IP construct introduction were interrogated for APB abundance, telomere length preservation, and senescent rescue. RESULTS: Here, we define the N-terminus of SLX4IP as being responsible for the promotion of the ALT-like phenotype of AR-negative CRPC models. Specifically, the N-terminus of SLX4IP was sufficient for promoting APB formation to a similar degree as full-length SLX4IP across CRPC cell lines. Additionally, APB promotion by the N-terminus of SLX4IP rescued telomere shortening and senescent induction triggered by SLX4IP knockdown in AR-negative CRPC cells. Moreover, APB formation and telomere maintenance were dependent on the ability of the N-terminus to direct SLX4IP localization at telomeres and APBs. CONCLUSIONS: These findings identify the role of the uncharacterized ALT regulator SLX4IP in the promotion of TMM coexistence to perpetuate replicative immortality in CRPC in vitro.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Humanos , Hibridização in Situ Fluorescente , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Mol Cancer Ther ; 20(2): 398-409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33298586

RESUMO

Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11, and ACAT1) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (ACAT1, MAP3K11, and PSMD12) as supporters of enzalutamide resistance in vitro Although ACAT1 expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of ACAT1 was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. MAP3K11 expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of MAP3K11 reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although PSMD12 expression did not change during disease progression, knockdown of PSMD12 resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells in vitro.


Assuntos
Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Benzamidas/farmacologia , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Transfecção
4.
Mol Cancer Res ; 19(2): 301-316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188147

RESUMO

In advanced prostate cancer, resistance to androgen deprivation therapy is achieved through numerous mechanisms, including loss of the androgen receptor (AR) allowing for AR-independent growth. Therapeutic options are limited for AR-independent castration-resistant prostate cancer (CRPC), and defining mechanisms critical for survival is of utmost importance for targeting this lethal disease. Our studies focus on identifying telomere maintenance mechanism (TMM) hallmarks adopted by CRPC to promote survival. TMMs are responsible for telomere elongation to instill replicative immortality and prevent senescence, with the two TMM pathways available being telomerase and alternative lengthening of telomeres (ALT). Here, we show that AR-independent CRPC demonstrates an atypical ALT-like phenotype with variable telomerase expression and activity, whereas AR-dependent models lack discernible ALT hallmarks. In addition, AR-independent CRPC cells exhibited elevated levels of SLX4IP, a protein implicated in promoting ALT. SLX4IP overexpression in AR-dependent C4-2B cells promoted an ALT-like phenotype and telomere maintenance. SLX4IP knockdown in AR-independent DU145 and PC-3 cells led to ALT-like hallmark reduction, telomere shortening, and induction of senescence. In PC-3 xenografts, this effect translated to reduced tumor volume. Using an in vitro model of AR-independent progression, loss of AR in AR-dependent C4-2B cells promoted an atypical ALT-like phenotype in an SLX4IP-dependent manner. Insufficient SLX4IP expression diminished ALT-like hallmarks and resulted in accelerated telomere loss and senescence. IMPLICATIONS: This study demonstrates a unique reliance of AR-independent CRPC on SLX4IP-mediated ALT-like hallmarks and loss of these hallmarks induces telomere shortening and senescence, thereby impairing replicative immortality.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Homeostase do Telômero/genética , Telômero/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais
5.
Prostate ; 80(13): 1058-1070, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32692871

RESUMO

BACKGROUND: Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS: We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS: NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION: We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.


Assuntos
Fatores de Transcrição NFI/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Fatores de Transcrição NFI/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Análise Serial de Tecidos , Transcriptoma
6.
Prostate ; 80(10): 731-741, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32356572

RESUMO

BACKGROUND: Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS: Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1ß and TGF-ß1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS: OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-ß1 stimulated OPN secretion by NHPrE-1 cells and both IL-1ß and TGF-ß1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS: OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.


Assuntos
Osteopontina/biossíntese , Hiperplasia Prostática/metabolismo , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Humanos , Imuno-Histoquímica , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Osteopontina/genética , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Estromais/metabolismo , Células Estromais/patologia
7.
Oncotarget ; 7(43): 70404-70419, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27611945

RESUMO

Androgens regulate the proliferation and differentiation of prostatic epithelial cells, including prostate cancer (PCa) cells in a context-dependent manner. Androgens and androgen receptor (AR) do not invariably promote cell proliferation; in the normal adult, endogenous stromal and epithelial AR activation maintains differentiation and inhibits organ growth. In the current study, we report that activation of AR differentially regulates the proliferation of human prostate epithelial progenitor cells, NHPrE1, in vitro and in vivo. Inducing AR signaling in NHPrE1 cells suppressed cell proliferation in vitro, concomitant with a reduction in MYC expression. However, ectopic expression of AR in vivo stimulated cell proliferation and induced development of invasive PCa in tissue recombinants consisting of NHPrE1/AR cells and rat urogenital mesenchymal (UGM) cells, engrafted under renal capsule of adult male athymic mice. Expression of MYC increased in the NHPrE1/AR recombinant tissues, in contrast to the reduction seen in vitro. The inhibitory effect of AR signaling on cell proliferation in vitro were reduced by co-culturing NHPrE1/AR epithelial cells with prostatic stromal cells. In conclusion, these studies revealed that AR signaling differentially regulates proliferation of human prostatic epithelia cells in vitro and in vivo through mechanisms involving stromal/epithelial interactions.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Próstata/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Receptores Androgênicos/genética , Células Estromais/citologia , Células Estromais/metabolismo
8.
Oncotarget ; 7(38): 61955-61969, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542219

RESUMO

Numerous studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of castration-resistant prostate cancer (CRPC), including the resistance to the new generation of inhibitors of androgen receptor (AR) action. Previously, we demonstrated that activation of NF-κB signaling increases ARVs expression in prostate cancer (PC) cells, thereby promoting progression to CRPC. However, it is unclear how NF-κB signaling is activated in CRPC. In this study, we report that long-term treatment with anti-androgens increases a neuroendocrine (NE) hormone - gastrin-releasing peptide (GRP) and its receptor (GRP-R) expression in PC cells. In addition, activation of GRP/GRP-R signaling increases ARVs expression through activating NF-κB signaling. This results in an androgen-dependent tumor progressing to a castrate resistant tumor. The knock-down of AR-V7 restores sensitivity to antiandrogens of PC cells over-expressing the GRP/GRP-R signaling pathway. These findings strongly indicate that the axis of Androgen-Deprivation Therapy (ADT) induces GRP/GRP-R activity, activation NF-κB and increased levels of AR-V7 expression resulting in progression to CRPC. Both prostate adenocarcinoma and small cell NE prostate cancer express GRP-R. Since the GRP-R is clinically targetable by analogue-based approach, this provides a novel therapeutic approach to treat advanced CRPC.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores da Bombesina/metabolismo , Adenocarcinoma/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Variação Genética , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/cirurgia , Splicing de RNA , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transcrição Gênica
9.
Prostate ; 76(11): 1004-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27197599

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy. METHODS: Tissue was collected from "Surgical" patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS: SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions. CONCLUSION: Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism to explain failure of 5ARI therapy in BPH patients. Prostate 76:1004-1018, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Inibidores de 5-alfa Redutase/uso terapêutico , Resistência a Medicamentos , NF-kappa B/fisiologia , Hiperplasia Prostática/tratamento farmacológico , Receptores Androgênicos/fisiologia , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/fisiologia , Animais , Apoptose , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/genética , Isoenzimas/fisiologia , Sintomas do Trato Urinário Inferior/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Nus , NF-kappa B/antagonistas & inibidores , Orquiectomia , Próstata/patologia , Hiperplasia Prostática/patologia , Hiperplasia Prostática/cirurgia , Neoplasias de Próstata Resistentes à Castração , Testosterona/biossíntese , Falha de Tratamento , Regulação para Cima
10.
Endocrinology ; 157(3): 1094-109, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26677878

RESUMO

A functional complex consisting of androgen receptor (AR) and forkhead box A1 (FOXA1) proteins supports prostatic development, differentiation, and disease. In addition, the interaction of FOXA1 with cofactors such as nuclear factor I (NFI) family members modulates AR target gene expression. However, the global role of specific NFI family members has yet to be described in the prostate. In these studies, chromatin immunoprecipitation followed by DNA sequencing in androgen-dependent LNCaP prostate cancer cells demonstrated that 64.3% of NFIB binding sites are associated with AR and FOXA1 binding sites. Interrogation of published data revealed that genes associated with NFIB binding sites are predominantly induced after dihydrotestosterone treatment of LNCaP cells, whereas NFIB knockdown studies demonstrated that loss of NFIB drives increased AR expression and superinduction of a subset of AR target genes. Notably, genes bound by NFIB only are associated with cell division and cell cycle. To define the role of NFIB in vivo, mouse Nfib knockout prostatic tissue was rescued via renal capsule engraftment. Loss of Nfib expression resulted in prostatic hyperplasia, which did not resolve in response to castration, and an expansion of an intermediate cell population in a small subset of grafts. In human benign prostatic hyperplasia, luminal NFIB loss correlated with more severe disease. Finally, some areas of intermediate cell expansion were also associated with NFIB loss. Taken together, these results show a fundamental role for NFIB as a coregulator of AR action in the prostate and in controlling prostatic hyperplasia.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição NFI/genética , Hiperplasia Prostática/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Imunofluorescência , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Próstata , Receptores Androgênicos/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA
11.
Prostate ; 76(5): 491-511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26709083

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. METHODS: NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. RESULTS: Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. CONCLUSION: Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy.


Assuntos
NF-kappa B/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Receptores Androgênicos/metabolismo , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Receptores Androgênicos/genética , Transdução de Sinais/genética
12.
Am J Pathol ; 185(5): 1385-95, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25907831

RESUMO

We previously found loss of forkhead box A1 (FOXA1) expression to be associated with aggressive urothelial carcinoma of the bladder, as well as increased tumor proliferation and invasion. These initial findings were substantiated by The Cancer Genome Atlas, which identified FOXA1 mutations in a subset of bladder cancers. However, the prognostic significance of FOXA1 inactivation and the effect of FOXA1 loss on urothelial differentiation remain unknown. Application of a univariate analysis (log-rank) and a multivariate Cox proportional hazards regression model revealed that loss of FOXA1 expression is an independent predictor of decreased overall survival. An ubiquitin Cre-driven system ablating Foxa1 expression in urothelium of adult mice resulted in sex-specific histologic alterations, with male mice developing urothelial hyperplasia and female mice developing keratinizing squamous metaplasia. Microarray analysis confirmed these findings and revealed a significant increase in cytokeratin 14 expression in the urothelium of the female Foxa1 knockout mouse and an increase in the expression of a number of genes normally associated with keratinocyte differentiation. IHC confirmed increased cytokeratin 14 expression in female bladders and additionally revealed enrichment of cytokeratin 14-positive basal cells in the hyperplastic urothelial mucosa in male Foxa1 knockout mice. Analysis of human tumor specimens confirmed a significant relationship between loss of FOXA1 and increased cytokeratin 14 expression.


Assuntos
Carcinoma de Células de Transição/patologia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/mortalidade , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Queratina-14 , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Modelos de Riscos Proporcionais , Caracteres Sexuais , Análise Serial de Tecidos , Transcriptoma , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade
13.
Mol Endocrinol ; 28(6): 949-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24801505

RESUMO

Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fatores de Transcrição NFI/metabolismo , Próstata/metabolismo , Proteína de Ligação a Androgênios/genética , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Células HeLa , Humanos , Masculino , Especificidade de Órgãos , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores Androgênicos/metabolismo , Transcrição Gênica
14.
Lab Invest ; 94(7): 726-39, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840332

RESUMO

The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1(loxp/loxp) mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1(loxp/loxp) prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.


Assuntos
Diferenciação Celular/genética , Epitélio/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Hiperplasia Prostática/genética , Animais , Epitélio/patologia , Fator 3-alfa Nuclear de Hepatócito/deficiência , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Imuno-Histoquímica , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Seminais/metabolismo , Transcriptoma/genética
15.
Cancer Metastasis Rev ; 33(2-3): 377-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24452759

RESUMO

When the National Institutes of Health Mouse Models of Human Cancer Consortium initiated the Prostate Steering Committee 15 years ago, there were no genetically engineered mouse (GEM) models of prostate cancer (PCa). Today, a PubMed search for "prostate cancer mouse model" yields 3,200 publications and this list continues to grow. The first generation of GEM utilized the newly discovered and characterized probasin promoter driving viral oncogenes such as Simian virus 40 large T antigen to yield the LADY and TRAMP models. As the PCa research field has matured, the second generation of models has incorporated the single and multiple molecular changes observed in human disease, such as loss of PTEN and overexpression of Myc. Application of these models has revealed that mice are particularly resistant to developing invasive PCa, and once they achieve invasive disease, the PCa rarely resembles human disease. Nevertheless, these models and their application have provided vital information on human PCa progression. The aim of this review is to provide a brief primer on mouse and human prostate histology and pathology, provide descriptions of mouse models, as well as attempt to answer the age old question: Which GEM model of PCa is the best for my research question?


Assuntos
Modelos Animais de Doenças , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos
16.
Cell Signal ; 24(2): 532-538, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22024284

RESUMO

During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Caderinas/biossíntese , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Próstata/metabolismo , Transdução de Sinais , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteína ADAM10 , Anfirregulina , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Caderinas/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cetuximab , Família de Proteínas EGF , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Expressão Gênica , Glicoproteínas/farmacologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Fosforilação/efeitos dos fármacos , Próstata/citologia , Próstata/efeitos dos fármacos , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Solubilidade
17.
Front Biosci (Landmark Ed) ; 17(5): 1948-64, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201848

RESUMO

Epithelial (E)-cadherin is a homophilic adhesion molecule which is responsible for maintenance of baso-lateral cell adhesion and polarity. E-cadherin can be lost from the cell surface by proteolytic cleavage, resulting in the generation of an 80kDa fragment referred to a soluble E-cadherin (sE-cad). Although originally discovered in the conditioned media of breast cancer cells and later verified in the fluids of cancer patients, today sE-cad has been reported in patients with viral and bacterial infections, organ failure, and benign disease. The proteases implicated in this cleavage event include members of the disintegrin family (ADAM10 and 15), bacterial proteases (gingipains and BFT), cathepsins (B, L, S), matrix metalloproteases (MMP-2, 3, 7, 9, and 14), Kallikrein-7 (KLK7), and plasmin. Stimulus that induces sE-cad generation by ADAMs, MMPs, KLK7, and plasmin in vitro ranges from serum withdrawal to pro-inflammatory cytokines to growth factors. The cellular or physiologic consequences of sE-cad accumulation include the disruption of adherens junctions, cellular migration and invasion, induction of MMPs, as well as cell signaling, suggesting that sE-cad may contribute to disease progression.


Assuntos
Caderinas/metabolismo , Progressão da Doença , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA