Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glia ; 69(8): 2037-2053, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851731

RESUMO

Nicotine is a highly addictive compound present in tobacco, which causes the release of dopamine in different regions of the brain. Recent studies have shown that astrocytes express nicotinic acetylcholine receptors (nAChRs) and mediate calcium signaling. In this study, we examine the morphological and functional adaptations of astrocytes due to nicotine exposure. Utilizing a combination of fluorescence and atomic force microscopy, we show that nicotine-treated astrocytes exhibit time-dependent remodeling in the number and length of both proximal and fine processes. Blocking nAChR activity with an antagonist completely abolishes nicotine's influence on astrocyte morphology indicating that nicotine's action is mediated by these receptors. Functional studies show that 24-hr nicotine treatment induces higher levels of calcium activity in both the cell soma and the processes with a more substantial change observed in the processes. Nicotine does not induce reactive astrocytosis even at high concentrations (10 µM) as determined by cytokine release and glial fibrillary acidic protein expression. We designed tissue clearing experiments to test whether morphological changes occur in vivo using astrocyte specific Aldh1l1-tdTomato knock in mice. We find that nicotine induces a change in the volume of astrocytes in the prefrontal cortex, CA1 of the hippocampus, and the substantia nigra. These results indicate that nicotine directly alters the functional and morphological properties of astrocytes potentially contributing to the underlying mechanism of nicotine abuse.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Astrócitos/metabolismo , Dopamina/metabolismo , Camundongos , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia
2.
Biol Open ; 6(12): 1831-1839, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109116

RESUMO

The cytoskeletal architecture directly affects the morphology, motility, and tensional homeostasis of the cell. In addition, the cytoskeleton is important for mitosis, intracellular traffic, organelle motility, and even cellular respiration. The organelle responsible for a majority of the energy conversion for the cell, the mitochondrion, has a dependence on the cytoskeleton for mobility and function. In previous studies, we established that cytoskeletal inhibitors altered the movement of the mitochondria, their morphology, and their respiration in human dermal fibroblasts. Here, we use this protocol to investigate applicability of power law diffusion to describe mitochondrial locomotion, assessment of rates of fission and fusion in healthy and diseased cells, and differences in mitochondria locomotion in more open networks either in response to cytoskeletal destabilizers or by cell line. We found that mitochondria within fibrosarcoma cells and within fibroblast cells treated with an actin-destabilizing toxin resulted in increased net travel, increased average velocity, and increased diffusion of mitochondria when compared to control fibroblasts. Although the mitochondria within the fibrosarcoma travel further than mitochondria within their healthy counterparts, fibroblasts, the dependence on mitochondria for respiration is much lower with higher rates ofhydrogen peroxide production and was confirmed using the OROBOROS O2K. We also found that rates of fission and fusion of the mitochondria equilibrate despite significant alteration of the cytoskeleton. Rates ranged from 15% to 25%, where the highest rates were observed within the fibrosarcoma cell line. This result is interesting because the fibrosarcoma cell line does not have increased respiration metrics including when compared to fibroblast. Mitochondria travel further, faster, and have an increase in percent mitochondria splitting or joining while not dependent on the mitochondria for a majority of its energy production. This study illustrates the complex interaction between mitochondrial movement and respiration through the disruption of the cytoskeleton.

3.
Soft Matter ; 13(9): 1873-1880, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177340

RESUMO

The cell interior is a crowded chemical space, which limits the diffusion of molecules and organelles within the cytoplasm, affecting the rates of chemical reactions. We provide insight into the relationship between non-specific intracellular diffusion and cytoskeletal integrity. Quantum dots entered the cell through microinjection and their spatial coordinates were captured by tracking their fluorescence signature as they diffused within the cell cytoplasm. Particle tracking revealed significant enhancement in the mobility of biocompatible quantum dots within fibrosarcoma cells versus their healthy counterparts, fibroblasts, as well as in actin destabilized fibroblasts versus untreated fibroblasts. Analyzing the displacement distributions provided insight into how the heterogeneity of the cell cytoskeleton influences intracellular particle diffusion. We demonstrate that intracellular diffusion of non-specific nanoparticles is enhanced by disrupting the actin network, which has implications for drug delivery efficacy and trafficking.

4.
J Mech Behav Biomed Mater ; 61: 197-207, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26874250

RESUMO

The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/ultraestrutura , Citocalasina D/farmacologia , Microtúbulos/ultraestrutura , Citoesqueleto de Actina/efeitos dos fármacos , Linhagem Celular , Elasticidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Nocodazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA