Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancers (Basel) ; 16(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38398141

RESUMO

Computerized methods have been developed that allow quantitative morphological analyses of whole slide images (WSIs), e.g., of immunohistochemical stains. The latter are attractive because they can provide high-resolution data on the distribution of proteins in tissue. However, many immunohistochemical results are complex because the protein of interest occurs in multiple locations (in different cells and also extracellularly). We have recently established an artificial intelligence framework, PathoFusion which utilises a bifocal convolutional neural network (BCNN) model for detecting and counting arbitrarily definable morphological structures. We have now complemented this model by adding an attention-based graph neural network (abGCN) for the advanced analysis and automated interpretation of such data. Classical convolutional neural network (CNN) models suffer from limitations when handling global information. In contrast, our abGCN is capable of creating a graph representation of cellular detail from entire WSIs. This abGCN method combines attention learning with visualisation techniques that pinpoint the location of informative cells and highlight cell-cell interactions. We have analysed cellular labelling for CD276, a protein of great interest in cancer immunology and a potential marker of malignant glioma cells/putative glioma stem cells (GSCs). We are especially interested in the relationship between CD276 expression and prognosis. The graphs permit predicting individual patient survival on the basis of GSC community features. Our experiments lay a foundation for the use of the BCNN-abGCN tool chain in automated diagnostic prognostication using immunohistochemically labelled histological slides, but the method is essentially generic and potentially a widely usable tool in medical research and AI based healthcare applications.

2.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555253

RESUMO

Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6ß1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Microglia/metabolismo , Neoplasias Encefálicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Microambiente Tumoral
3.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884502

RESUMO

Routine examination of entire histological slides at cellular resolution poses a significant if not insurmountable challenge to human observers. However, high-resolution data such as the cellular distribution of proteins in tissues, e.g., those obtained following immunochemical staining, are highly desirable. Our present study extends the applicability of the PathoFusion framework to the cellular level. We illustrate our approach using the detection of CD276 immunoreactive cells in glioblastoma as an example. Following automatic identification by means of PathoFusion's bifocal convolutional neural network (BCNN) model, individual cells are automatically profiled and counted. Only discriminable cells selected through data filtering and thresholding were segmented for cell-level analysis. Subsequently, we converted the detection signals into the corresponding heatmaps visualizing the distribution of the detected cells in entire whole-slide images of adjacent H&E-stained sections using the Discrete Wavelet Transform (DWT). Our results demonstrate that PathoFusion is capable of autonomously detecting and counting individual immunochemically labelled cells with a high prediction performance of 0.992 AUC and 97.7% accuracy. The data can be used for whole-slide cross-modality analyses, e.g., relationships between immunochemical signals and anaplastic histological features. PathoFusion has the potential to be applied to additional problems that seek to correlate heterogeneous data streams and to serve as a clinically applicable, weakly supervised system for histological image analyses in (neuro)pathology.

4.
Cancers (Basel) ; 13(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557152

RESUMO

We have developed a platform, termed PathoFusion, which is an integrated system for marking, training, and recognition of pathological features in whole-slide tissue sections. The platform uses a bifocal convolutional neural network (BCNN) which is designed to simultaneously capture both index and contextual feature information from shorter and longer image tiles, respectively. This is analogous to how a microscopist in pathology works, identifying a cancerous morphological feature in the tissue context using first a narrow and then a wider focus, hence bifocal. Adjacent tissue sections obtained from glioblastoma cases were processed for hematoxylin and eosin (H&E) and immunohistochemical (CD276) staining. Image tiles cropped from the digitized images based on markings made by a consultant neuropathologist were used to train the BCNN. PathoFusion demonstrated its ability to recognize malignant neuropathological features autonomously and map immunohistochemical data simultaneously. Our experiments show that PathoFusion achieved areas under the curve (AUCs) of 0.985 ± 0.011 and 0.988 ± 0.001 in patch-level recognition of six typical pathomorphological features and detection of associated immunoreactivity, respectively. On this basis, the system further correlated CD276 immunoreactivity to abnormal tumor vasculature. Corresponding feature distributions and overlaps were visualized by heatmaps, permitting high-resolution qualitative as well as quantitative morphological analyses for entire histological slides. Recognition of more user-defined pathomorphological features can be added to the system and included in future tissue analyses. Integration of PathoFusion with the day-to-day service workflow of a (neuro)pathology department is a goal. The software code for PathoFusion is made publicly available.

5.
Front Bioinform ; 1: 718697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303770

RESUMO

Diffuse gliomas are the most common malignant primary brain tumors. Identification of isocitrate dehydrogenase 1 (IDH1) mutations aids the diagnostic classification of these tumors and the prediction of their clinical outcomes. While histology continues to play a key role in frozen section diagnosis, as a diagnostic reference and as a method for monitoring disease progression, recent research has demonstrated the ability of multi-parametric magnetic resonance imaging (MRI) sequences for predicting IDH genotypes. In this paper, we aim to improve the prediction accuracy of IDH1 genotypes by integrating multi-modal imaging information from digitized histopathological data derived from routine histological slide scans and the MRI sequences including T1-contrast (T1) and Fluid-attenuated inversion recovery imaging (T2-FLAIR). In this research, we have established an automated framework to process, analyze and integrate the histopathological and radiological information from high-resolution pathology slides and multi-sequence MRI scans. Our machine-learning framework comprehensively computed multi-level information including molecular level, cellular level, and texture level information to reflect predictive IDH genotypes. Firstly, an automated pre-processing was developed to select the regions of interest (ROIs) from pathology slides. Secondly, to interactively fuse the multimodal complementary information, comprehensive feature information was extracted from the pathology ROIs and segmented tumor regions (enhanced tumor, edema and non-enhanced tumor) from MRI sequences. Thirdly, a Random Forest (RF)-based algorithm was employed to identify and quantitatively characterize histopathological and radiological imaging origins, respectively. Finally, we integrated multi-modal imaging features with a machine-learning algorithm and tested the performance of the framework for IDH1 genotyping, we also provided visual and statistical explanation to support the understanding on prediction outcomes. The training and testing experiments on 217 pathologically verified IDH1 genotyped glioma cases from multi-resource validated that our fully automated machine-learning model predicted IDH1 genotypes with greater accuracy and reliability than models that were based on radiological imaging data only. The accuracy of IDH1 genotype prediction was 0.90 compared to 0.82 for radiomic result. Thus, the integration of multi-parametric imaging features for automated analysis of cross-modal biomedical data improved the prediction accuracy of glioma IDH1 genotypes.

6.
Sci Rep ; 10(1): 16011, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32968119

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 10(1): 9968, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561881

RESUMO

Glioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour's ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo-/- mouse strain (C57BL/6-Tspotm1GuMu(GuwiyangWurra)). The high selectivity of [18 F]PBR111 for the TSPO combined with the exclusive expression of TSPO in glioma cells infiltrating into null-background host tissue free of any TSPO expression, makes it possible, for the first time, to unequivocally and with uniquely high biological contrast identify peri-tumoral glioma cell invasion at preclinical stages in vivo. Comparison of the in vivo imaging signal from wild-type glioma cells in a null background with the signal in a wild-type host tissue, where the tumour induces the expected TSPO expression in the host's glial cells, illustrates the substantial extent of the peritumoral host response to the growing tumour. The syngeneic tumour (TSPO+/+) in null background (TSPO-/-) model is thus well suited to study the interaction of the tumour front with the peri-tumoral tissue, and the experimental evaluation of new therapeutic approaches targeting the invasive behaviour of glioblastoma.

8.
Neurooncol Pract ; 7(1): 31-37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32257282

RESUMO

BACKGROUND: A key component of cancer research is the availability of clinical samples with appropriately annotated clinical data. Biobanks facilitate research by collecting/storing various types of clinical samples for research. Brain Cancer Biobanking Australia (BCBA) was established to facilitate the networking of brain cancer biobanking operations Australia-wide. Maximizing biospecimen utility in a networked biobanking environment requires the standardization of procedures and data across different sites. The aim of this research was to scope and develop a recommended clinical annotation dataset both for pediatric and adult brain cancer biobanks. METHODS: A multidisciplinary working group consisting of members from the BCBA Consortium was established to develop clinical dataset recommendations for brain cancer biobanks. A literature search was undertaken to identify any published clinical dataset recommendations for brain cancer biobanks. An audit of data items collected and stored by BCBA member biobanks was also conducted to survey current clinical data collection practices across the BCBA network. RESULTS: BCBA has developed a clinical annotation dataset recommendation for pediatric and adult brain cancer biobanks. The clinical dataset recommendation has 5 clinical data categories: demographic, clinical and radiological diagnosis and surgery, neuropathological diagnosis, patient treatment, and patient follow-up. The data fields have been categorized into 1 of 3 tiers; essential, preferred, and comprehensive. This enables biobanks and researchers to prioritize appropriately where resources are limited. CONCLUSION: This dataset can be used to guide the integration of data from multiple existing biobanks for research studies and for planning prospective brain cancer biobanking activities.

9.
Brain Tumor Pathol ; 36(2): 29-39, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30859343

RESUMO

Diffuse gliomas (grades II-IV) are amongst the most frequent and devastating primary brain tumours of adults. Currently, patients are monitored by clinical examination and radiographic imaging, which can be challenging to interpret and insensitive to early signs of treatment failure and tumour relapse. While brain biopsy and histologic analysis can evaluate disease progression, serial biopsies are invasive and impractical given the cumulative surgical risk, and may not capture the complete molecular landscape of an evolving tumour. The availability of a minimally invasive 'liquid biopsy' that could assess tumour activity and molecular phenotype in situ has the potential to greatly enhance patient care. Circulating extracellular vesicles (EVs) hold significant promise as robust disease-specific biomarkers accessible in the blood of patients with glioblastoma and other diffuse gliomas. EVs are membrane-bound nanoparticles shed from most if not all cells of the body, and carry DNA, RNA, protein, and lipids that reflect the identity and molecular state of their cell-of-origin. EVs can cross the blood-brain barrier and their release is upregulated in neoplasia. In this review, we describe the current knowledge of EV biology, the role of EVs in glioma biology and the current experience and challenges in profiling glioma-EVs from the circulation.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Glioma/patologia , Adulto , Biomarcadores Tumorais/metabolismo , Biópsia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Progressão da Doença , Vesículas Extracelulares/fisiologia , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/patologia , Glioma/sangue , Glioma/diagnóstico , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/tendências , Recidiva Local de Neoplasia/patologia
10.
J Biol Phys ; 44(1): 53-80, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29090363

RESUMO

We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 µL.s-1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10-4 nm-1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10-4 nm-1, while 50% of cilia underwent bending similar to that observed during calcium-free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 µm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 µm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 µM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ≈1.0 mM in vitro, but at higher concentration (≈1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule-associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer.


Assuntos
Axonema/metabolismo , Cálcio/metabolismo , Cílios/metabolismo , Animais , Axonema/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cílios/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Paclitaxel/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Medula Espinal/citologia , Canais de Cátion TRPP/metabolismo , Tubulina (Proteína)/química
11.
Clin Neuropathol ; 35(5): 302-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191913

RESUMO

Microglia are not generally known to cause brain tumors but one bona fide case of adult microglioma has been published [9]. This tumor was highly malignant. We now report on a second, juvenile case, which showed a less aggressive course. Microglioma is a primary central nervous system (CNS) neoplasm distinct from glioma and other known brain tumor entities, based on its strong immunoreactivity for the macrophage marker CD163, the microglia marker Iba1, and the complete absence of neural as well as lymphocyte antigens. Furthermore, we have analyzed the literature and identified a number of cases that qualify as primary parenchymal histiocytic sarcomas of the CNS, which lack microglial morphology. Considering the non-hematopoietic developmental origin of the vast majority of microglia and the distinct morphological as well as immunophenotypic similarity of their neoplastic counterparts, we suggest using the term microglioma. More cases will be required along with appropriately-collected tissue to establish the molecular genetic profile of this extremely rare entity.


Assuntos
Neoplasias Encefálicas/patologia , Microglia/patologia , Biomarcadores Tumorais/análise , Pré-Escolar , Feminino , Sarcoma Histiocítico/patologia , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Microscopia Confocal
12.
Dev Neurobiol ; 76(5): 507-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26184457

RESUMO

During early development of the central nervous system (CNS), a subset of yolk-sac derived myeloid cells populate the brain and provide the seed for the microglial cell population, which will self-renew throughout life. As development progresses, individual microglial cells transition from a phagocytic amoeboid state through a transitional morphing phase into the sessile, ramified, and normally nonphagocytic microglia observed in the adult CNS under healthy conditions. The molecular drivers of this tissue-specific maturation profile are not known. However, a survey of tissue resident macrophages identified miR-124 to be expressed in microglia. In this study, we used transgenic zebrafish to overexpress miR-124 in the mpeg1 expressing yolk-sac-derived myeloid cells that seed the microglia. In addition, a systemic sponge designed to neutralize the effects of miR-124 was used to assess microglial development in a miR-124 loss-of-function environment. Following the induction of miR-124 overexpression, microglial motility and phagocytosis of apoptotic cells were significantly reduced. miR-124 overexpression in microglia resulted in the accumulation of residual apoptotic cell bodies in the optic tectum, which could not be achieved by miR-124 overexpression in differentiated neurons. Conversely, expression of the miR-124 sponge caused an increase in the motility of microglia and transiently rescued motility and phagocytosis functions when activated simultaneously with miR-124 overexpression. This study provides in vivo evidence that miR-124 activity has a key role in the development of functionally mature microglia.


Assuntos
MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Fagocitose/fisiologia , Homologia de Sequência , Colículos Superiores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Nat Commun ; 5: 5452, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25406832

RESUMO

The evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer's disease to anxiety. Here we show that global C57BL/6-Tspo(tm1GuWu(GuwiyangWurra))-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from (GuwiyangWurra)TSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of (GuwiyangWurra)TSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs.


Assuntos
Glândulas Suprarrenais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Rim/diagnóstico por imagem , Microglia/metabolismo , Receptores de GABA/genética , Trifosfato de Adenosina/metabolismo , Animais , Comportamento Animal , Colesterol/metabolismo , Fertilidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tomografia por Emissão de Pósitrons , Pregnenolona/sangue , Protoporfirinas/metabolismo , Baço/diagnóstico por imagem , Testículo/diagnóstico por imagem , Imagem Corporal Total
14.
Alzheimers Dement ; 10(1): 67-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23688577

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) represents an at-risk state for Alzheimer's disease in which underlying pathophysiological mechanisms could be delineated. Oxidative stress has been implicated in Alzheimer's disease and can be measured by levels of the antioxidant glutathione. This study aims to assess in vivo levels of glutathione via proton magnetic resonance spectroscopy in patients with MCI and to determine how glutathione relates to cognitive decline. METHODS: Fifty-four patients with MCI and 41 healthy control subjects underwent proton magnetic resonance spectroscopy in conjunction with medical, psychiatric, and neuropsychological assessments. The concentration of glutathione was measured in the anterior and posterior cingulate, and ratios of glutathione were calculated relative to creatine. Neuropsychological performance was assessed across the domains of processing speed, learning, memory, and executive functions. RESULTS: In comparison with control subjects, patients with MCI had significantly elevated ratios of glutathione in the anterior (t = -2.2, P = .03) and posterior (t = -2.9, P = .005) cingulate. Higher levels of anterior cingulate glutathione were related to neuropsychological decrements on tests of executive functions. Elevated posterior cingulate glutathione was associated with poorer memory consolidation. CONCLUSION: This study has shown for the first time that MCI is associated with increased glutathione in the cingulate, which in turn relates to neuropsychological performance. This finding may be indicative of an early compensatory or neuroprotective response, and the role of glial cells and glutathione enzymes requires delineation. Longitudinal studies examining the utility of glutathione as a marker for cognitive decline are now required.


Assuntos
Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Glutationa/metabolismo , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Prótons , Escalas de Graduação Psiquiátrica , Cintilografia , Aprendizagem Verbal/fisiologia
15.
Metab Brain Dis ; 29(4): 1027-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24346482

RESUMO

Hepatic encephalopathy (HE) is a common complication of chronic alcoholism and patients show neurological symptoms ranging from mild cognitive dysfunction to coma and death. The HE brain is characterized by glial changes, including microglial activation, but the exact pathogenesis of HE is poorly understood. During a study investigating cell proliferation in the subventricular zone of chronic alcoholics, a single case with widespread proliferation throughout their adjacent grey and white matter was noted. This case also had concomitant HE raising the possibility that glial proliferation might be a pathological feature of the disease. In order to explore this possibility fixed postmortem human brain tissue from chronic alcoholics with cirrhosis and HE (n = 9), alcoholics without HE (n = 4) and controls (n = 4) were examined using immunohistochemistry and cytokine assays. In total, 4/9 HE cases had PCNA- and a second proliferative marker, Ki-67-positive cells throughout their brain and these cells co-stained with the microglial marker, Iba1. These cases were termed 'proliferative HE' (pHE). The microglia in pHEs displayed an activated morphology with hypertrophied cell bodies and short, thickened processes. In contrast, the microglia in white matter regions of the non-proliferative HE cases were less activated and appeared dystrophic. pHEs were also characterized by higher interleukin-6 levels and a slightly higher neuronal density . These findings suggest that microglial proliferation may form part of an early neuroprotective response in HE that ultimately fails to halt the course of the disease because underlying etiological factors such as high cerebral ammonia and systemic inflammation remain.


Assuntos
Alcoolismo/patologia , Encéfalo/patologia , Encefalopatia Hepática/patologia , Microglia/patologia , Alcoolismo/complicações , Química Encefálica , Contagem de Células , Divisão Celular , Citocinas/análise , Feminino , Encefalopatia Hepática/etiologia , Humanos , Hipertrofia , Antígeno Ki-67/análise , Cirrose Hepática Alcoólica/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Antígeno Nuclear de Célula em Proliferação/análise , Fumar/patologia , Substância Branca/patologia
16.
Dev Neurobiol ; 73(1): 60-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22648905

RESUMO

Microglia, the resident macrophage precursors of the brain, are necessary for the maintenance of tissue homeostasis and activated by a wide range of pathological stimuli. They have a key role in immune and inflammatory responses. Early microglia stem from primitive macrophages, however the transition from early motile forms to the ramified mature resident microglia has not been assayed in real time. In order to provide such an assay, we used zebrafish transgenic lines in which fluorescent reporter expression is driven by the promoter of macrophage expressed gene 1 (mpeg1; Ellet et al. [2011]: Blood 117(4): e49-e56,). This enabled the investigation of the development of these cells in live, intact larvae. We show that microglia develop from highly motile amoeboid cells that are engaged in phagocytosis of apoptotic cell bodies into a microglial cell type that rapidly morphs back and forth between amoeboid and ramified morphologies. These morphing microglia eventually settle into a typical mature ramified morphology. Developing microglia frequently come into contact with blood capillaries in the brain, and also frequently contact each other. Up to 10 days postfertilization, microglia were observed to undergo symmetric division. In the adult optic tectum, the microglia are highly branched, resembling mammalian microglia. In addition, the mpeg1 transgene also labeled highly branched cells in the skin overlying the optic tectum from 8-9 days postfertilization, which likely represent Langerhans cells. Thus, the development of zebrafish microglia and their cellular interactions was studied in the intact developing brain in real time and at cellular resolution.


Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Colículos Superiores , Análise de Variância , Animais , Animais Geneticamente Modificados , Anexina A5/metabolismo , Apoptose/genética , Encéfalo/citologia , Encéfalo/embriologia , Contagem de Células , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Microscopia Confocal , Fagócitos/fisiologia , Colículos Superiores/citologia , Colículos Superiores/embriologia , Colículos Superiores/crescimento & desenvolvimento , Fatores de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteína Vermelha Fluorescente
17.
Neuro Oncol ; 14(8): 958-78, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573310

RESUMO

Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood-brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Microglia/patologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioma/imunologia , Glioma/terapia , Humanos
18.
Exp Neurol ; 234(2): 255-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22273537

RESUMO

Microglia are gatekeepers in the CNS for a wide range of pathological stimuli and they blow the whistle when things go wrong. Collectively, microglia form a CNS tissue alarm system (Kreutzberg's "sensor of pathology"), and their involvement in physiological pain is in line with this function. However, pathological neuropathic pain is characterized by microglial activation that is unwanted and considered to contribute to or even cause tactile allodynia, hyperalgesia and spontaneous pain. Such abnormal microglial behavior seems likely due to an as yet ill-understood disturbance of microglial functions unrelated to inflammation. The idea that microglia have roles in the CNS that differ from those of peripheral macrophages has gained momentum with the discovery of their separate, pre-hematopoietic lineage during embryonic development and their direct interactions with synapses.


Assuntos
Dor Crônica/fisiopatologia , Inflamação/fisiopatologia , Microglia/fisiologia , Neuralgia/fisiopatologia , Animais , Moduladores de Receptores de Canabinoides/fisiologia , Humanos
19.
Front Biosci (Elite Ed) ; 3(1): 371-9, 2011 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-21196317

RESUMO

Tumour associated macrophages (TAMs) are increasingly recognized as supporters of tumour growth. The present study was undertaken to examine benign pilocytic astrocytomas (PAs) for the presence of M2 macrophages. We have asked the question whether TAMs in PAs share the predominant CD163 immunophenotype with tumour-associated microglia/macrophages of malignant gliomas. In addition, we were interested in the question whether there is evidence that the macrophages in PAs derive from resident microglia in surrounding normal brain or whether cells expressing a macrophage phenotype may invade PAs from the vasculature. The latter question is of great interest with regard to so-called "bone marrow-derived microglia" (BMDM) which may provide a physiological route of entry into the CNS that could be used for novel cell-based treatments of brain cancer. In fact, we have found strong morphological evidence for such macrophage recruitment into PAs. We propose therefore that PAs may be used as a model for the study of macrophage recruitment into gliomas. Importantly, our results also confirm that microglia/macrophage infiltration per se is not associated with malignant glioma behaviour.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Astrocitoma/imunologia , Astrocitoma/metabolismo , Células da Medula Óssea/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos CD/imunologia , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Análise em Microsséries , Microglia/imunologia , Receptores de Superfície Celular/imunologia
20.
Science ; 330(6005): 783-8, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21051630

RESUMO

Microglia are resident brain cells that sense pathological tissue alterations. They can develop into brain macrophages and perform immunological functions. However, expression of immune proteins by microglia is not synonymous with inflammation, because these molecules can have central nervous system (CNS)-specific roles. Through their involvement in pain mechanisms, microglia also respond to external threats. Experimental studies support the idea that microglia have a role in the maintenance of synaptic integrity. Analogous to electricians, they are capable of removing defunct axon terminals, thereby helping neuronal connections to stay intact. Microglia in healthy CNS tissue do not qualify as macrophages, and their specific functions are beginning to be explored.


Assuntos
Encéfalo/citologia , Microglia/fisiologia , Medula Espinal/citologia , Animais , Comportamento , Comportamento Animal , Transplante de Medula Óssea , Encéfalo/patologia , Encéfalo/fisiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Encefalopatias/terapia , Humanos , Macrófagos/citologia , Macrófagos/fisiologia , Transtornos Mentais/fisiopatologia , Microglia/imunologia , Mutação , Neuralgia/fisiopatologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/terapia , Transdução de Sinais , Medula Espinal/patologia , Medula Espinal/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA