Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(1): 324-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164157

RESUMO

Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have garnered interest in augmenting invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers a quite recent alternative to established radiation-based diagnostic modalities with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPION). It also offers a bimodal theranostic framework that can combine tomographic imaging with therapeutic techniques using the very same SPION. Methods: We show the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia (MFH)) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions using a commercial MPI system and a custom-made heating insert. The heating characteristics as well as theranostic applications of the platform were demonstrated by various phantom experiments using commercial SPION. Results: We have shown the feasibility of an MPI-MFH-based theranostic platform by demonstrating high spatial control of the therapeutic target, adequate MPI-based thermometry, and successful in situ interleaved MPI-MFH application. Conclusions: MPI-MFH-based theranostic platforms serve as valuable tools that enable the synergistic integration of diagnostic and therapeutic approaches. The transition into in vivo studies will be essential to further validate their potential, and it holds promising prospects for future advancements.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Termometria , Medicina de Precisão , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/uso terapêutico , Campos Magnéticos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34617413

RESUMO

Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Assuntos
Diagnóstico por Imagem , Nanopartículas de Magnetita , Circulação Cerebrovascular , Humanos , Isquemia , Fenômenos Magnéticos
3.
Sci Rep ; 7(1): 6872, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761103

RESUMO

Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 µg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.


Assuntos
Diagnóstico por Imagem/instrumentação , Nanopartículas de Magnetita , Animais , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Coração/diagnóstico por imagem , Limite de Detecção , Campos Magnéticos , Camundongos
4.
Z Med Phys ; 22(4): 323-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22909418

RESUMO

Magnetic Particle Imaging (MPI) is a recently invented tomographic imaging method that quantitatively measures the spatial distribution of a tracer based on magnetic nanoparticles. The new modality promises a high sensitivity and high spatial as well as temporal resolution. There is a high potential of MPI to improve interventional and image-guided surgical procedures because, today, established medical imaging modalities typically excel in only one or two of these important imaging properties. MPI makes use of the non-linear magnetization characteristics of the magnetic nanoparticles. For this purpose, two magnetic fields are created and superimposed, a static selection field and an oscillatory drive field. If superparamagnetic iron-oxide nanoparticles (SPIOs) are subjected to the oscillatory magnetic field, the particles will react with a non-linear magnetization response, which can be measured with an appropriate pick-up coil arrangement. Due to the non-linearity of the particle magnetization, the received signal consists of the fundamental excitation frequency as well as of harmonics. After separation of the fundamental signal, the nanoparticle concentration can be reconstructed quantitatively based on the harmonics. The spatial coding is realized with the static selection field that produces a field-free point, which is moved through the field of view by the drive fields. This article focuses on the frequency-based image reconstruction approach and the corresponding imaging devices while alternative concepts like x-space MPI and field-free line imaging are described as well. The status quo in hardware realization is summarized in an overview of MPI scanners.


Assuntos
Meios de Contraste , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Algoritmos , Computadores , Campos Eletromagnéticos , Desenho de Equipamento , Humanos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA