Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 52(5): 355-367, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38485280

RESUMO

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transportadores de Ânions Orgânicos , Silimarina , Humanos , Masculino , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Transgênicos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Silimarina/metabolismo , Interações Medicamentosas
2.
Mol Pharm ; 21(5): 2284-2297, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38529622

RESUMO

Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.


Assuntos
Interações Medicamentosas , Transportador 1 de Ânion Orgânico Específico do Fígado , Camundongos Transgênicos , Pravastatina , Rifampina , Silimarina , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Animais , Rifampina/farmacocinética , Camundongos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Humanos , Silimarina/farmacocinética , Pravastatina/farmacocinética , Pravastatina/administração & dosagem , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Quinolinas/farmacocinética , Coproporfirinas/metabolismo , Masculino , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo
3.
Tetrahedron Lett ; 1342024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38328000

RESUMO

Diepoxin-η (1) is a cytotoxic fungal metabolite belonging to the spirobisnaphthalene structural class. In this study, four mono fluorinated analogues (2-5) of diepoxin-η (1) were semisynthesized in a single-step by selectively fluorinating the naphthalene moiety with Selectfluor. The structures of 2-5 were elucidated using a set of spectroscopic and spectrometric techniques and were further confirmed by means of TDDFT-ECD and isotropic shielding tensors calculations. Compounds 2-5 showed equipotent cytotoxic activity to 1 when tested against OVCAR3 (ovarian) and MDA-MB-435 (melanoma) cancer cell lines with IC50 values that range from 5.7-8.2 µM.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37627557

RESUMO

Tef (Eragrostis tef) is an orphan crop that is widely grown in East Africa, primarily in Ethiopia as a staple crop. It is becoming popular in the Western world owing to its nutritious and gluten-free grains and the forage quality of its biomass. Tef is also considered to have a high antioxidant capacity based on cell-free studies. However, the antioxidant activity of tef has never been validated using a physiologically relevant cell model. The purpose of this study was to investigate the antioxidant capacity of tef grain extracts using a mammalian cell model. We hypothesized that the tef grain extracts are capable of modulating the cellular antioxidant response via the modulation of glutathione (GSH) biosynthetic pathways. Therefore, we evaluated the antioxidant activity of purified tef grain extracts in the human acute monocytic leukemia (THP-1) cell line. Our findings revealed that the organic fraction of grain extracts increased the cellular GSH level, which was more evident for brown-colored tef than the ivory variety. Moreover, a brown-tef fraction increased the expressions of GSH-pathway genes, including γ-glutamate cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits and glutathione reductase (GR), an enzyme that plays a key role in GSH biosynthesis, suggesting that tef extracts may modulate GSH metabolism. Several compounds were uniquely identified via mass spectrometry (MS) in GSH-modulating brown-tef samples, including 4-oxo-ß-apo-13-carotenone, γ-linolenic acid (methyl ester), 4,4'-(2,3-dimethyl-1,4-butanediyl)bis-phenol (also referred to as 8,8'-lignan-4,4'-diol), and (3ß)-3-[[2-[4-(Acetylamino)phenoxy]acetyl]oxy]olean-12-en-28-oic acid. Tef possesses antioxidant activity due to the presence of phytochemicals that can act as direct antioxidants, as well as modulators of antioxidant-response genes, indicating its potential role in alleviating diseases triggered by oxidative stresses. To the best of our knowledge, this is the first report revealing the antioxidant ability of tef extracts in a physiologically relevant human cell model.

5.
Angew Chem Int Ed Engl ; 62(7): e202218082, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36529706

RESUMO

Cyclopeptide alkaloids are an abundant class of plant cyclopeptides with over 200 analogs described and bioactivities ranging from analgesic to antiviral. While these natural products have been known for decades, their biosynthetic basis remains unclear. Using a transcriptome-mining approach, we link the cyclopeptide alkaloids from Ceanothus americanus to dedicated RiPP precursor peptides and identify new, widely distributed split BURP peptide cyclase containing gene clusters. Guided by our bioinformatic analysis, we identify and isolate new cyclopeptides from Coffea arabica, which we named arabipeptins. Reconstitution of the enzyme activity for the BURP found in the biosynthesis of arabipeptin A validates the activity of the newly discovered split BURP peptide cyclases. These results expand our understanding of the biosynthetic pathways responsible for diverse cyclic plant peptides and suggest that these side chain cross-link modifications are widely distributed in eudicots.


Assuntos
Produtos Biológicos , Peptídeos Cíclicos , Peptídeos Cíclicos/metabolismo , Peptídeos/química , Biologia Computacional , Processamento de Proteína Pós-Traducional , Produtos Biológicos/química , Vias Biossintéticas/genética
6.
Phytother Res ; 35(6): 3286-3297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33587330

RESUMO

Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.


Assuntos
Flavonolignanos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Silybum marianum/química , Silimarina/metabolismo , Animais , Antioxidantes/metabolismo , Interações Medicamentosas , Flavonoides/metabolismo , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quinolinas/farmacocinética , Ratos , Ratos Sprague-Dawley
7.
J Control Release ; 331: 260-269, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33484778

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. Unfortunately, high recurrence rates and poor survival remain despite surgical resection and conventional chemotherapy. Local drug delivery systems are a promising intervention for lung cancer treatment with the potential for improved efficacy with reduced systemic toxicity. Here, we describe the development of a chemotherapy-loaded polymer buttress, to be implanted along the surgical margin at the time of tumor resection, for achieving local and prolonged release of a new anticancer agent, eupenifeldin. We prepared five different formulations of buttresses with varying amounts of eupenifeldin, and additional external empty polymer coating layers (or thicknesses) to modulate drug release. The in vitro eupenifeldin release profile depends on the number of external coating layers with the formulation of the greatest thickness demonstrating a prolonged release approaching 90 days. Similarly, the long-term cytotoxicity of eupenifeldin-loaded buttress formulations against murine Lewis lung carcinoma (LLC) and human lung carcinoma (A549) cell lines mirrors the eupenifeldin release profiles and shows a prolonged cytotoxic effect. Eupenifeldin-loaded buttresses significantly decrease local tumor recurrence in vivo and increase disease-free survival in a lung cancer resection model.


Assuntos
Neoplasias Pulmonares , Polímeros , Animais , Sistemas de Liberação de Medicamentos , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Polímeros/uso terapêutico , Tropolona/análogos & derivados
8.
Nat Prod Commun ; 14(6)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33214801

RESUMO

Activity-guided fractionation was used to isolate and identify two components of the Brazilian açaí berry (Euterpe oleracea Mart.) with the ability to induce antioxidant response element (ARE)-dependent gene transcription in human hepatoma (HepG2) cells. Using an ARE-Luciferase reporter construct in cultured HepG2 cells, a suite of fractions from dried and powdered açaí berries were evaluated for transcriptional up-regulation of the luciferase gene. Active fractions were further refined until several pure compounds were isolated and identified. These compounds belong to the pheophorbide class of molecules, and are composed of the methyl and ethyl esters of the parent pheophorbide A, all of which are classified as photosensitizers. Using standard pheophorbides, dose response studies were carried out, and ARE-activation could be observed at concentrations as low as 8.2 µM and 16.9 µM for pheophorbide A methyl ester and pheophorbide A, respectively. These studies not only suggest a possible source of antioxidant properties for the açaí berry, but may also explain the recently identified photosensitizing abilities of açaí products as well.

9.
Planta Med ; 85(1): 62-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30016827

RESUMO

In research focused on the discovery of new chemical diversity from freshwater fungi, a peak library was built and evaluated against a prostate cancer cell line, E006AA-hT, which was derived from an African American, as this population is disproportionately affected by prostate cancer. The chemical study of the bioactive sample accessioned as G858 (Delitschia sp.) led to the isolation of eight new α-pyrone derivatives (1:  - 7: , and 11: ), as well as the new 3S*,4S*-7-ethyl-4,8-dihydroxy-3,6-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (15: ). In addition, the known compounds 5-(3-S-hydroxybutyl)-4-methoxy-6-methyl-2H-pyran-2-one (8: ), 5-(3-oxobutyl)-4-methoxy-6-methyl-2H-pyran-2-one (9: ), pyrenocine I (10: ), 5-butyl-6-(hydroxymethyl)-4-methoxy-2H-pyran-2-one (12: ), sporidesmin A (13: ), 6-ethyl-2,7-dimethoxyjuglone (14: ), artrichitin (16: ), and lipopeptide 15G256ε (17: ) were also obtained. The structures of the new compounds were elucidated using a set of spectroscopic (NMR) and spectrometric (HRMS) methods. The absolute configuration of the most abundant member of each subclass of compounds was assigned through a modified Mosher's ester method. For 15: , the relative configuration was assigned based on analysis of 3 J values. Compounds 1, 2, 5:  - 14, 16: , and 17: were evaluated against the cancer cell line E006AA-hT under hypoxic conditions, where compound 13: inhibited cell proliferation at a concentration of 2.5 µM.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/química , Neoplasias da Próstata/patologia , Pironas/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Água Doce/microbiologia , Humanos , Masculino , Pironas/química , Pironas/isolamento & purificação
10.
J Nat Prod ; 80(6): 1883-1892, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28594169

RESUMO

Synthetic biological approaches, such as site-directed biosynthesis, have contributed to the expansion of the chemical space of natural products, making possible the biosynthesis of unnatural metabolites that otherwise would be difficult to access. Such methods may allow the incorporation of fluorine, an atom rarely found in nature, into complex secondary metabolites. Organofluorine compounds and secondary metabolites have both played pivotal roles in the development of drugs; however, their discovery and development are often via nonintersecting tracks. In this context, we used the biosynthetic machinery of Trichoderma arundinaceum (strain MSX70741) to incorporate a fluorine atom into peptaibol-type molecules in a site-selective manner. Thus, fermentation of strain MSX70741 in media containing ortho- and meta-F-phenylalanine resulted in the biosynthesis of two new fluorine-containing alamethicin F50 derivatives. The fluorinated products were characterized using spectroscopic (1D and 2D NMR, including 19F) and spectrometric (HRESIMS/MSn) methods, and their absolute configurations were established by Marfey's analysis. Fluorine-containing alamethicin F50 derivatives exhibited potency analogous to the nonfluorinated parent when evaluated against a panel of human cancer cell lines. Importantly, the biosynthesis of fluorinated alamethicin F50 derivatives by strain MSX70741 was monitored in situ using a droplet-liquid microjunction-surface sampling probe coupled to a hyphenated system.


Assuntos
Produtos Biológicos/química , Hidrocarbonetos Fluorados/metabolismo , Peptaibols/metabolismo , Trichoderma/química , Sequência de Aminoácidos , Antibacterianos/química , Produtos Biológicos/metabolismo , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptaibols/química
11.
Chem Sci ; 8(12): 8443-8450, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619192

RESUMO

Current chemotherapeutic dosing strategies are limited by the toxicity of anticancer agents and therefore rely on multiple low-dose administrations. As an alternative, we describe a novel sustained-release, biodegradable polymeric nanocarrier as a single administration replacement of multi-dose paclitaxel (PTX) treatment regimens. The first synthesis of poly(1,2-glycerol carbonate)-graft-succinic acid-paclitaxel (PGC-PTX) is described, and its use enables high, controlled PTX loadings of up to 74 wt%. Moreover, the polymer backbone is composed of biocompatible building blocks-glycerol and carbon dioxide. When formulated as nanoparticles (NPs), PGC-PTX NPs exhibit PTX concentrations >15 mg mL-1, sub-100 nm diameters, narrow dispersity, storage stability for up to 6 months, and sustained and controlled PTX release kinetics over an extended period of 70 days. A safely administered single dose of PGC-PTX NPs contains more PTX than the median lethal dose of standard PTX. In murine models of peritoneal carcinomatosis, in which the clinical implementation of multi-dose intraperitoneal (IP) treatment regimens is limited by catheter-related complications, PGC-PTX NPs exhibit improved safety at high doses, tumor localization, and efficacy even after a single IP injection, with comparable curative effect to PTX administered as a multi-dose IP treatment regimen.

12.
RSC Adv ; 7(72): 45733-45751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379602

RESUMO

In the field of natural products chemistry, a common question pertains to the authenticity of an isolated compound, i.e. are the interesting side chains biosynthesized naturally or an artefact of the isolation/purification processes? The droplet-liquid microjunction-surface sampling probe (droplet-LMJ-SSP) coupled to a hyphenated system (UPLC-UV-HRESIMS) empowers the analysis of natural product sources in situ, providing data on the biosynthetic timing and spatial distribution of secondary metabolites. In this study the droplet-LMJ-SSP was utilized to validate the authenticity of two new peptaibols (2 and 3) as biosynthesized secondary metabolites, even though both them had structural features that could be perceived as artefacts. Compounds 2 and 3 were isolated from the scaled up fermentation of Trichoderma arundinaceum (strain MSX70741), along with a new member of the trichobrevin BIII complex (1), and four known compounds (4-7). The structures of the isolates were established using a set of spectroscopic and spectrometric methods, and their absolute configurations were determined by Marfey's analysis. The cytotoxic activity of compounds 1, 3, 4 and 6 was evaluated against a panel of cancer cell lines, where cytotoxic activity in the single digit µM range was observed.

13.
PLoS One ; 10(5): e0124276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933416

RESUMO

Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can originate from endophytic bacteria. Together, our findings indicate that ethanolic E. purpurea extracts contain multiple constituents that differentially regulate cytokine production by macrophages.


Assuntos
Bactérias/química , Citocinas/metabolismo , Echinacea/química , Endófitos/química , Etanol/química , Extratos Vegetais/farmacologia , Amidas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Fracionamento Químico , Quimiocinas/metabolismo , Echinacea/crescimento & desenvolvimento , Camundongos , Piranos/química , Piranos/farmacologia , Células RAW 264.7 , Sementes/efeitos dos fármacos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese , Xantinas/química , Xantinas/farmacologia
14.
European J Org Chem ; 2015(1): 109-121, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25574154

RESUMO

Sixteen polyketides belonging to diverse structural classes, including monomeric/dimeric tetrahydroxanthones and resorcylic acid lactones, were isolated from an organic extract of a fungal culture Setophoma terrestris (MSX45109) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, six were new: penicillixanthone B (5), blennolide H (6), 11-deoxy blennolide D (7), blennolide I (9), blennolide J (10), and pyrenomycin (16). The known compounds were: secalonic acid A (1), secalonic acid E (2), secalonic acid G (3), penicillixanthone A (4), paecilin B (8), aigialomycin A (11), hypothemycin (12), dihydrohypothemycin (13), pyrenochaetic acid C (14), and nidulalin B (15). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the absolute configurations of compounds 1-10 were determined using ECD spectroscopy combined with time-dependent density functional theory (TDDFT) calculations, while a modified Mosher's ester method was used for compound 16. The cytotoxic activities of compounds (1-15) were evaluated using the MDA-MB-435 (melanoma) and SW-620 (colon) cancer cell lines. Compounds 1, 4, and 12 were the most potent with IC50 values ranging from 0.16 to 2.14 µM. When tested against a panel of bacteria and fungi, compounds 3 and 5 showed promising activity against the Gram-positive bacterium Micrococcus luteus with MIC values of 5 and 15 µg/mL, respectively.

15.
Bioorg Med Chem ; 21(13): 3919-26, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23673225

RESUMO

Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Silybum marianum/química , Silimarina/química , Silimarina/farmacologia , Antivirais/isolamento & purificação , Antivirais/toxicidade , Hidrocarboneto de Aril Hidroxilases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Hepatite C/tratamento farmacológico , Humanos , Metilação , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Microssomos/metabolismo , Silimarina/isolamento & purificação , Silimarina/toxicidade
16.
J Nat Prod ; 76(3): 382-7, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23301853

RESUMO

Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.


Assuntos
Ascomicetos/química , Benzoquinonas/isolamento & purificação , Benzoquinonas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/isolamento & purificação , Inibidores da Fosfodiesterase 4/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Terfenil/isolamento & purificação , Compostos de Terfenil/farmacologia , Ascomicetos/classificação , Benzoquinonas/química , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Inibidores da Fosfodiesterase 4/química , Compostos de Terfenil/química
17.
Bioorg Med Chem ; 21(3): 742-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23260576

RESUMO

Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Silimarina/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antivirais/síntese química , Antivirais/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP2C9 , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Metilação , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Silibina , Silimarina/síntese química , Silimarina/química , Relação Estrutura-Atividade
18.
J Antibiot (Tokyo) ; 65(11): 559-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22968289

RESUMO

Bioactivity-directed fractionation of the organic extracts of two filamentous fungi of the Bionectriaceae, strains MSX 64546 and MSX 59553 from the Mycosynthetix library, led to the isolation of a new dimeric epipolythiodioxopiperazine alkaloid, verticillin H (1), along with six related analogs, Sch 52900 (2), verticillin A (3), gliocladicillin C (4), Sch 52901 (5), 11'-deoxyverticillin A (6) and gliocladicillin A (7). The structures of compounds 1-7 were determined by extensive NMR and HRMS analyses, as well as by comparisons to the literature. All compounds (1-7) were evaluated for cytotoxicity against a panel of human cancer cell lines, displaying IC(50) values ranging from 1.2 µM to 10 nM. Compounds 1-5 were examined for activity in the NF-κB assay, where compounds 2 and 3 revealed activity in the sub-micromolar range. Additionally, compounds 1, 3 and 4 were tested for EGFR inhibition using an enzymatic assay, while compound 3 was examined against an overexpressing EGFR(+ve) cancer cell line.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Dissulfetos/isolamento & purificação , Dissulfetos/farmacologia , Hypocreales/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Piperazinas/isolamento & purificação , Piperazinas/farmacologia , Compostos de Terfenil/isolamento & purificação , Compostos de Terfenil/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Dissulfetos/química , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Alcaloides Indólicos/química , Indóis/química , Indóis/isolamento & purificação , Indóis/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Piperazinas/química , Compostos de Terfenil/química
19.
J Antibiot (Tokyo) ; 65(1): 3-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22068158

RESUMO

Two new xanthone-anthraquinone heterodimers, acremoxanthone C (5) and acremoxanthone D (2), have been isolated from an extract of an unidentified fungus of the order Hypocreales (MSX 17022) by bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Two known related compounds, acremonidin A (4) and acremonidin C (3) were also isolated, as was a known benzophenone, moniliphenone (1). The structures of these isolates were determined via extensive use of spectroscopic and spectrometric tools in conjunction with comparisons to the literature. All compounds (1-5) were evaluated against a suite of biological assays, including those for cytotoxicity, inhibition of the 20S proteasome, mitochondrial transmembrane potential and nuclear factor-κB.


Assuntos
Antraquinonas/isolamento & purificação , Antraquinonas/farmacologia , Antineoplásicos/isolamento & purificação , Hypocreales/química , Xantonas/isolamento & purificação , Xantonas/farmacologia , Antraquinonas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ressonância Magnética Nuclear Biomolecular , Rotação Ocular , Complexo de Endopeptidases do Proteassoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Xantonas/química
20.
Tetrahedron Lett ; 52(40): 5128-5230, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22025810

RESUMO

A fungal extract (MSX 63619), from the Mycosynthetix library of over 50,000 fungi, displayed promising cytotoxicity against a human tumor cell panel. Bioactivity-directed fractionation led to the isolation of an o-pyranonaphthoquinone decaketide, which we termed obionin B (1). The structure of 1 was deduced via spectroscopic and spectrometric techniques. The IC(50) value of 1 was moderate, ranging from 3 to 13 µM, depending on the cell line tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA