Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 30(9-10): 381-396, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30572762

RESUMO

Accumulating evidence indicates the developing central nervous system (CNS) is a target of air pollution toxicity. Epidemiological reports increasingly demonstrate that exposure to the particulate matter (PM) fraction of air pollution during neurodevelopment is associated with an increased risk of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). These observations are supported by animal studies demonstrating prenatal exposure to concentrated ambient PM induces neuropathologies characteristic of ASD, including ventriculomegaly and aberrant corpus callosum (CC) myelination. Given the role of the CC and cerebellum in ASD etiology, this study tested whether prenatal exposure to concentrated ambient particles (CAPs) produced pathological features in offspring CC and cerebella consistent with ASD. Analysis of cerebellar myelin density revealed male-specific hypermyelination in CAPs-exposed offspring at postnatal days (PNDs) 11-15 without alteration of cerebellar area. Atomic absorption spectroscopy (AAS) revealed elevated iron (Fe) in the cerebellum of CAPs-exposed female offspring at PNDs 11-15, which connects with previously observed elevated Fe in the female CC. The presence of Fe inclusions, along with aluminum (Al) and silicon (Si) inclusions, were confirmed at nanoscale resolution in the CC along with ultrastructural myelin sheath damage. Furthermore, RNAseq and gene ontology (GO) enrichment analyses revealed cerebellar gene expression was significantly affected by sex and prenatal CAPs exposure with significant enrichment in inflammation and transmembrane transport processes that could underlie observed myelin and metal pathologies. Overall, this study highlights the ability of PM exposure to disrupt myelinogenesis and elucidates novel molecular targets of PM-induced developmental neurotoxicity.


Assuntos
Poluição do Ar/efeitos adversos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Ferro/análise , Material Particulado/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Feminino , Masculino , Camundongos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Gravidez
2.
Toxicol Sci ; 127(1): 256-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367688

RESUMO

Nanoceria is used as a catalyst in diesel fuel, as an abrasive in printed circuit manufacture, and is being pursued as an antioxidant therapeutic. Our objective is to extend previous findings showing that there were no reductions of cerium in organs of the mononuclear phagocyte (reticuloendothelial) system up to 30 days after a single nanoscale ceria administration. An ~5% aqueous dispersion of citrate-stabilized 30 nm ceria, synthesized and characterized in-house, or vehicle, was iv infused into rats terminated 1, 7, 30, or 90 days later. Cageside observations were obtained daily, body weight weekly. Daily urinary and fecal cerium outputs were quantified for 2 weeks. Nine organs were weighed and samples collected from 14 tissues/organs/systems, blood and cerebrospinal fluid for cerium determination. Histology and oxidative stress were assessed. Less than 1% of the nanoceria was excreted in the first 2 weeks, 98% in feces. Body weight gain was initially impaired. Spleen weight was significantly increased in some ceria-treated groups, associated with abnormalities. Ceria was primarily retained in the spleen, liver, and bone marrow. There was little decrease of ceria in any tissue over the 90 days. Granulomas were observed in the liver. Time-dependent oxidative stress changes were seen in the liver and spleen. Nanoscale ceria was persistently retained by organs of the mononuclear phagocyte system, associated with adverse changes. The results support concern about the long-term fate and adverse effects of inert nanoscale metal oxides that distribute throughout the body, are persistently retained, and produce adverse changes.


Assuntos
Cério/farmacocinética , Cério/toxicidade , Nanoestruturas/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Granuloma/induzido quimicamente , Granuloma/patologia , Infusões Intravenosas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Taxa de Depuração Metabólica , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA