Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 70, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167542

RESUMO

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Leucócitos Mononucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células K562 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
2.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771118

RESUMO

Although proteasome inhibitors have emerged as the therapeutic backbone of multiple myeloma treatment, patients often relapse and become drug refractory. The combination between proteasome and histone deacetylase inhibitors has shown to be more efficient compared to monotherapy by enhancing the anti-myeloma activity and improving the patient's lifetime expectancy. Hybrid molecules, combining two drugs/pharmacophores in a single molecular entity, offer improved effectiveness by modulating more than one target and circumventing differences in the pharmacokinetic and pharmacodynamic profiles, which are the main disadvantages of combination therapy. Therefore, eleven histone deacetylase-proteasome inhibitor hybrids were synthesized, combining pharmacophores of entinostat and bortezomib. Compound 3 displayed the strongest antiproliferative activity with an IC50 value of 9.5 nM in the multiple myeloma cells RPMI 8226, 157.7 nM in the same cell line resistant to bortezomib, and 13.1 nM in a 3D spheroid model containing multiple myeloma and mesenchymal stem cells. Moreover, the compound inhibited 33% of histone deacetylase activity when RPMI 8226 cells were treated for 8 h at 10 µM. It also inhibited the proteasome activity with an IC50 value of 23.6 nM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Resistencia a Medicamentos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA