Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150477, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39096884

RESUMO

In Western industrialized countries, prostate cancer (PCa) is the second most common malignant disease and prevalent cause of death for men. Epidemiological studies have shown that curcumin (CUR) either prevents PCa initiation or delays its progression to a more aggressive and treatment-refractory form, thus reducing related mortality. Our previous studies have proven the anticancer, antioxidant, and anti-inflammatory properties of CUR on PCa cells. However, there are few reports of the effect of CUR on energy and lipid pathways in PCa. Herein, we show that CUR can modulate the two metabolic energy pathways, increasing glycolytic reserve and reducing oxidative phosphorylation. Moreover, through the regulation of key enzymes and proteins, CUR affected the lipid pathway in PC-3 to a greater extent compared to the healthy PNT-2 cells. According to molecular docking investigations, the CUR activity in PCa may be mediated by the direct binding to the pyruvate dehydrogenase (PDHA1) enzyme, which is essential for regulating the appropriate mitochondrial activity. Taken together, our results shed light on the mechanism of action of CUR in the PCa cell metabolism and provide evidence of its potential value as an anticancer metabolic modulator, paving opportunities for novel therapeutic strategies.

2.
J Exp Clin Cancer Res ; 43(1): 171, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886784

RESUMO

BACKGROUND: The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS: BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS: Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS: Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Piperazinas , Piridinas , Receptores de Estrogênio , Humanos , Piridinas/farmacologia , Piridinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Feminino , Receptores de Estrogênio/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral
3.
J Transl Med ; 22(1): 450, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741146

RESUMO

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Assuntos
Movimento Celular , Estetrol , Regulação Neoplásica da Expressão Gênica , Inibidor 2 de Ativador de Plasminogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Estetrol/farmacologia , Estetrol/metabolismo , Invasividade Neoplásica , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética
4.
J Transl Med ; 22(1): 208, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413989

RESUMO

BACKGROUND: Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS: Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION: Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.


Assuntos
Flavanonas , Hesperidina , Mieloma Múltiplo , Camundongos , Animais , Humanos , Hesperidina/farmacologia , Dinâmica Mitocondrial , Mieloma Múltiplo/tratamento farmacológico , Simulação de Acoplamento Molecular , Camundongos Endogâmicos NOD , Camundongos SCID , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavanonas/química
5.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375216

RESUMO

Virgin coconut oil (VCO) is a functional food with important health benefits. Its economic interest encourages fraudsters to deliberately adulterate VCO with cheap and low-quality vegetable oils for financial gain, causing health and safety problems for consumers. In this context, there is an urgent need for rapid, accurate, and precise analytical techniques to detect VCO adulteration. In this study, the use of Fourier transform infrared (FTIR) spectroscopy combined with multivariate curve resolution-alternating least squares (MCR-ALS) methodology was evaluated to verify the purity or adulteration of VCO with reference to low-cost commercial oils such as sunflower (SO), maize (MO) and peanut (PO) oils. A two-step analytical procedure was developed, where an initial control chart approach was designed to assess the purity of oil samples using the MCR-ALS score values calculated on a data set of pure and adulterated oils. The pre-treatment of the spectral data by derivatization with the Savitzky-Golay algorithm allowed to obtain the classification limits able to distinguish the pure samples with 100% of correct classifications in the external validation. In the next step, three calibration models were developed using MCR-ALS with correlation constraints for analysis of adulterated coconut oil samples in order to assess the blend composition. Different data pre-treatment strategies were tested to best extract the information contained in the sample fingerprints. The best results were achieved by derivative and standard normal variate procedures obtaining RMSEP and RE% values in the ranges of 1.79-2.66 and 6.48-8.35%, respectively. The models were optimized using a genetic algorithm (GA) to select the most important variables and the final models in the external validations gave satisfactory results in quantifying adulterants, with absolute errors and RMSEP of less than 4.6% and 1.470, respectively.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Óleo de Coco , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Contaminação de Alimentos/análise , Óleos de Plantas/análise , Análise dos Mínimos Quadrados , Azeite de Oliva/análise
6.
Pharmaceuticals (Basel) ; 16(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242501

RESUMO

Stilbenoids, a group of phytoalexin polyphenols produced by plants as a defence mechanism in response to stress conditions, are known for their anti-inflammatory potential. Pinosylvin, a naturally occurring molecule traditionally found in pinus trees, was here identified in Pinus nigra subsp. laricio var. calabrica from Southern Italy through HPLC analysis. Both this molecule and its well-known analogue resveratrol, the most famous wine polyphenol, were compared for their in vitro potential anti-inflammatory activity. Pinosylvin significantly inhibited the release of pro-inflammatory cytokines (TNF-α and IL-6) and NO mediator in LPS-stimulated RAW 264.7 cells. Moreover, its ability to inhibit the JAK/STAT signaling pathway was assessed: Western blot analyses showed a downregulation of both phosphorylated JAK2 and STAT3 proteins. Finally, in order to verify whether this biological activity could be attributed to a direct interaction of pinosylvin with JAK2, a molecular docking study was performed, confirming the capability of pinosylvin to bind the active site of the protein.

7.
Cells ; 12(4)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831322

RESUMO

The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.


Assuntos
Receptor alfa de Estrogênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Receptor alfa de Estrogênio/metabolismo , Agonismo Inverso de Drogas , Estrogênios , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos
8.
Eur J Med Chem ; 246: 114971, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462440

RESUMO

The biochemical role of the PI3K/PKB/mTOR signalling pathway in cell-cycle regulation is now well known. During the onset and development of different forms of cancer it becomes overactive reducing apoptosis and allowing cell proliferation. Therefore, this pathway has become an important target for the treatment of various forms of malignant tumors, including breast cancer and follicular lymphoma. Recently, several more or less selective inhibitors targeting these proteins have been identified. In general, drugs that act on multiple targets within the entire pathway are more efficient than single targeting inhibitors. Multiple inhibitors exhibit high potency and limited drug resistance, resulting in promising anticancer agents. In this context, the present survey focuses on small molecule drugs capable of modulating the PI3K/PKB/mTOR signalling pathway, thus representing drugs or drug candidates to be used in the pharmacological treatment of different forms of cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Inibidores de MTOR , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Mini Rev Med Chem ; 23(9): 1050-1057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36177628

RESUMO

Nanotechnology has greatly impacted our daily life and has certainly yielded many promising benefits. Titanium dioxide nanoparticles (TiO2-NPs) are among those produced on a large industrial scale that have found many practical applications in industry and daily life. Due to their presence in products such as food, cosmetics, sunscreens, medications, paints or textiles, contact with TiO2-NPs in our daily life is inevitable. The small size, together with the corresponding large specific surface area, make nanoparticles able to penetrate through cellular barriers and reach various parts of the body through different routes of exposure, including inhalation, injection, dermal penetration, and gastrointestinal tract absorption. Furthermore, after long-term exposure, the TiO2-NPs could accumulate in tissues leading to chronic diseases. This raises serious doubts about their potentially harmful effects on human health. In the past, TiO2-NPs have been considered inert, however, many in vitro studies have shown that they were cyto- and genotoxic, leading to the production of reactive oxygen species (ROS) and to the activation of signaling pathways involved in inflammation and cell death. Several in vivo studies have also demonstrated that TiO2-NPs, once in the bloodstream, could reach and accumulate in important organs causing toxic effects. Very recently, the International Agency for Research on Cancer (IARC) has classified these nanoparticles as possibly carcinogenic to humans. In this survey, we summarize the latest advances in acknowledging the toxicity and safety of TiO2-NPs. Since the literature is often controversial, further studies are still needed to define the risk/benefit ratio of using these nanoparticles. Overall, the data herein reported are critical for assessing human risk after exposure to TiO2-NPs.


Assuntos
Nanopartículas , Humanos , Titânio/toxicidade , Titânio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação
10.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080203

RESUMO

In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Pró-Fármacos/metabolismo , Solubilidade
11.
J Enzyme Inhib Med Chem ; 37(1): 1600-1609, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635194

RESUMO

Letrozole is one of the most prescribed drugs for the treatment of breast cancer in post-menopausal women, and it is endowed with selective peripheral aromatase inhibitory activity. The efficacy of this drug is also a consequence of its long-lasting activity, likely due to its metabolic stability. The reactivity of cyano groups in the letrozole structure could, however, lead to chemical derivatives still endowed with residual biological activity. Herein, the chemical degradation process of the drug was studied by coupling multivariate curve resolution and spectrophotometric methodologies in order to assess a detailed kinetic profile. Three main derivatives were identified after drug exposure to different degradation conditions, consisting of acid-base and oxidative environments and stressing light. Molecular docking confirmed the capability of these compounds to accommodate into the active site of the enzyme, suggesting that the sustained inhibitory activity of letrozole may be at least in part attributed to the degradation compounds.


Assuntos
Inibidores da Aromatase , Aromatase , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Quimiometria , Feminino , Humanos , Cinética , Letrozol/farmacologia , Simulação de Acoplamento Molecular , Nitrilas/química , Nitrilas/farmacologia , Triazóis/química
12.
Molecules ; 26(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577189

RESUMO

Tacle® is a citrus fruit obtained from the crossbreeding of Clementine and Tarocco cultivars. This fruit retains a promising nutraceutical potential most likely due to a high content in polyphenols, among which the main constituents are the two glycosides naringin and hesperidin. Herein, we evaluated, through an in vitro assay, the capability of Tacle extracts to inhibit the hydroxymethylglutaryl-CoA reductase enzyme, which plays a key role in cholesterol biosynthesis. The results obtained spurred us to investigate whether the anti-enzymatic activity observed may be due to a direct interaction of aglycones naringenin and hesperetin with the enzyme catalytic site. Molecular docking simulations indicated that these two compounds are able to anchor to the protein with binding modes and affinities similar to those found for statins, which represent mainstream medications against hypercholesterolemia. The overall results showed an interesting nutraceutical potential of Tacle, suggesting that its extract could be used for dietary supplementation in the treatment of moderate hypercholesterolemia.


Assuntos
Citrus/química , Inibidores Enzimáticos/química , Hidroximetilglutaril-CoA Redutases/metabolismo , Hipercolesterolemia/tratamento farmacológico , Extratos Vegetais/química , Polifenóis/química , Suplementos Nutricionais , Flavanonas/química , Flavonoides/química , Flavonoides/farmacologia , Frutas/química , Hesperidina/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ligação Proteica , Conformação Proteica
13.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203324

RESUMO

The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.


Assuntos
Anti-Inflamatórios não Esteroides , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Nabumetona , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Células MCF-7 , Nabumetona/síntese química , Nabumetona/química , Nabumetona/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32849301

RESUMO

Estrogens exert a panel of biological activities mainly through the estrogen receptors α and ß, which belong to the nuclear receptor superfamily. Diverse studies have shown that the G protein-coupled estrogen receptor 1 (GPER, previously known as GPR30) also mediates the multifaceted effects of estrogens in numerous pathophysiological events, including neurodegenerative, immune, metabolic, and cardiovascular disorders and the progression of different types of cancer. In particular, GPER is implicated in hormone-sensitive tumors, albeit diverse issues remain to be deeply investigated. As such, this receptor may represent an appealing target for therapeutics in different diseases. The yet unavailable complete GPER crystallographic structure, and its relatively low sequence similarity with the other members of the G protein-coupled receptor (GPCR) family, hamper the possibility to discover compounds able to modulate GPER activity. Consequently, a reliable molecular model of this receptor is required for the design of suitable ligands. To date, convergent approaches involving structure-based drug design and virtual ligand screening have led to the identification of several GPER selective ligands, thus providing important information regarding its mode of action and function. In this survey, we summarize results obtained through computer-aided techniques devoted to the assessment of GPER ligands toward their usefulness in innovative treatments of different diseases.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Desenho de Fármacos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
15.
J Pharm Biomed Anal ; 186: 113332, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387749

RESUMO

The kinetics and photodegradation mechanism of the pharmaceutical mixture of hydrochlorothiazide (HCT) and amiloride (AML) has been studied in depth using a chemometric approach. Water solutions of HCT and AML, separately or in binary mixtures, were irradiated with forced light at different pH values (3, 7, 9 and 12). Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) modelling has been applied to the experimental data recorded by UV spectrophotometry and HPLC-UV/MS. 78 data sets were collected and their chemometric processing has allowed the simultaneous determination of the behaviour of the two drugs in the mixture when exposed to light and the dependence of their photodegradation kinetics on pH. MCR-ALS has been applied using three different implementations. Soft-MCR-ALS and hybrid Hard/Soft-MCR-ALS have been used to resolve the experimental data and to get the equilibrium and kinetic parameters of the investigated chemical processes. A third implementation of the MCR-ALS method has been used in the analysis of the incomplete data sets obtained when UV spectrophotometric and HPLC-UV/MS data were simultaneously analysed, using a row- and column-wise incomplete augmented data matrix arrangement. In these matrices, information from HPLC-UV detector was used as a bridge between the data recorded by UV spectrophotometry (acid-base and kinetic reactions monitoring) and the data obtained by HPLC-MS.


Assuntos
Amilorida/química , Diuréticos/química , Hidroclorotiazida/química , Fotólise , Amilorida/análise , Cromatografia Líquida de Alta Pressão , Diuréticos/análise , Combinação de Medicamentos , Hidroclorotiazida/análise , Concentração de Íons de Hidrogênio , Cinética , Análise dos Mínimos Quadrados , Espectrometria de Massas , Espectrofotometria Ultravioleta
16.
Biomolecules ; 10(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260113

RESUMO

Obesity represents a risk factor for breast cancer development and therapy resistance, but the molecular players underling these links are unclear. Here, we identify a role for the obesity-cytokine leptin in sustaining aromatase inhibitor (AI) resistant growth and progression in breast cancer. Using as experimental models MCF-7 breast cancer cells surviving long-term treatment with the AI anastrozole (AnaR) and Ana-sensitive counterparts, we found that AnaR cells expressed higher levels of leptin and its receptors (ObR) along with a constitutive activation of downstream effectors. Accordingly, leptin signaling inhibition reduced only AnaR cell growth and motility, highlighting the existence of an autocrine loop in mechanisms governing drug-resistant phenotypes. In agreement with ObR overexpression, increasing doses of leptin were able to stimulate to a greater extent growth and migration in AnaR than sensitive cells. Moreover, leptin contributed to enhanced crosstalk between AnaR cells and macrophages within the tumor microenvironment. Indeed, AnaR, through leptin secretion, modulated macrophage profiles and increased macrophage motility through CXCR4 signaling, as evidenced by RNA-sequencing, real-time PCR, and immunoblotting. Reciprocally, activated macrophages increased AnaR cell growth and motility in coculture systems. In conclusion, acquired AI resistance is accompanied by the development of a leptin-driven phenotype, highlighting the potential clinical benefit of targeting this cytokine network in hormone-resistant breast cancers, especially in obese women.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Leptina/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Anastrozol/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores CXCR4/metabolismo
17.
Mini Rev Med Chem ; 20(6): 444-465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951166

RESUMO

Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Antineoplásicos/química , Carbazóis/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química
18.
Eur J Med Chem ; 181: 111583, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400710

RESUMO

3-(Alkyl(dialkyl)amino)benzothieno[2,3-f]quinazolin-1(2H)-ones (4-9) have been designed using Ellipticine structure as a model, replacing the carbazole core and the pyridine ring with a dibenzothiophene and a pyrimidine moiety, respectively. New benzothienoquinazolinones (4-9) have been synthesized by a simple one-pot reaction employing 3-aminodibenzothiophene as starting material. The benzothienoquinazolinones obtained (4-9), were evaluated for their anticancer activity against two breast cancer cell lines, MDA-MB-231 and MCF-7. The results revealed that compounds 4 and 7 presented a good antitumor activity toward the triple negative MDA-MB-231, without cytotoxicity against non-tumoral cells. Furthermore, the compounds 4 and 7 can be considered important molecular multi-target tools for their dual inhibition of different cellular proteins, i.e. Tubulin and human Topoisomerase I, involved in relevant cellular processes, as predicted by in silico studies and demonstrated by in vitro assays (for compound 4).


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Simulação de Acoplamento Molecular , Quinazolinonas/química , Quinazolinonas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Inibidores da Topoisomerase I/química , Moduladores de Tubulina/química
19.
J Exp Clin Cancer Res ; 38(1): 335, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370872

RESUMO

BACKGROUND: The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity. METHODS: Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA. RESULTS: We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC. CONCLUSIONS: In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Metilcolantreno/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metilcolantreno/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Transporte Proteico , Receptores de Hidrocarboneto Arílico/química , Receptores de Estrogênio/química , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
20.
Cells ; 8(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207943

RESUMO

The inhibition of the G protein-coupled estrogen receptor (GPER) offers promising perspectives for the treatment of breast tumors. A peptide corresponding to part of the hinge region/AF2 domain of the human estrogen receptor α (ERα17p, residues 295-311) exerts anti-proliferative effects in various breast cancer cells including those used as triple negative breast cancer (TNBC) models. As preliminary investigations have evoked a role for the GPER in the mechanism of action of this peptide, we focused our studies on this protein using SkBr3 breast cancer cells, which are ideal for GPER evaluation. ERα17p inhibits cell growth by targeting membrane signaling. Identified as a GPER inverse agonist, it co-localizes with GPER and induces the proteasome-dependent downregulation of GPER. It also decreases the level of pEGFR (phosphorylation of epidermal growth factor receptor), pERK1/2 (phosphorylation of extracellular signal-regulated kinase), and c-fos. ERα17p is rapidly distributed in mice after intra-peritoneal injection and is found primarily in the mammary glands. The N-terminal PLMI motif, which presents analogies with the GPER antagonist PBX1, reproduces the effect of the whole ERα17p. Thus, this motif seems to direct the action of the entire peptide, as highlighted by docking and molecular dynamics studies. Consequently, the tetrapeptide PLMI, which can be claimed as the first peptidic GPER disruptor, could open new avenues for specific GPER modulators.


Assuntos
Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA