Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124920

RESUMO

Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, ß-galactosidase, ß-glucosidase, and N-acetyl-ß-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.


Assuntos
Antifúngicos , Colletotrichum , Óleos Voláteis , Espécies Reativas de Oxigênio , Ruta , Colletotrichum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ruta/química , Antifúngicos/farmacologia , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana , Fragmentação do DNA/efeitos dos fármacos
2.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999031

RESUMO

Tomatoes are well known for their impressive nutritional value among vegetables. However, the industrial processing of tomatoes generates a significant amount of waste. Specifically, 10% to 18% of the raw materials used in tomato processing become waste. This waste can seriously affect ecosystems, such as freshwater bodies, wetlands, rivers, and other natural environments, if not properly managed. Interestingly, tomato waste, specifically the skin, contains lycopene, a potent antioxidant and antimutagenic that offers a range of health benefits. This makes it a valuable ingredient in industries such as food and cosmetics. In addition, researchers are exploring the potential of lycopene in the treatment of various types of cancer. This systematic review, guided by the PRISMA 2020 methodology, examined studies exploring the possibility of tomato peel as a source of lycopene and carotenoids for cancer treatment. The findings suggest that tomato peel extracts exhibit promising anticancer properties, underscoring the need for further investigation of possible therapeutic applications. The compiled literature reveals significant potential for using tomato peel to create new cancer treatments, which could potentially revolutionize the field of oncology. This underscores the importance of continued research and exploration, emphasizing the urgency and importance of the scientific community's contribution to this promising area of study.


Assuntos
Licopeno , Neoplasias , Solanum lycopersicum , Solanum lycopersicum/química , Licopeno/química , Licopeno/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carotenoides/uso terapêutico , Carotenoides/química , Carotenoides/farmacologia , Animais
3.
Nanomaterials (Basel) ; 14(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38251150

RESUMO

Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.

4.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257194

RESUMO

Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.


Assuntos
Grafite , Neoplasias do Colo do Útero , Humanos , Feminino , Grafite/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Óxidos/farmacologia
5.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765166

RESUMO

The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.

6.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838907

RESUMO

Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.


Assuntos
Quitosana , Infarto do Miocárdio , Humanos , Quitosana/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual
7.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616482

RESUMO

The development of scaffolds for cell regeneration has increased because they must have adequate biocompatibility and mechanical properties to be applied in tissue engineering. In this sense, incorporating nanofillers or essential oils has allowed new architectures to promote cell proliferation and regeneration of new tissue. With this goal, we prepared four membranes based on polylactic acid (PLA), polycaprolactone (PCL), titanium dioxide nanoparticles (TiO2-NPs), and orange essential oil (OEO) by the drop-casting method. The preparation of TiO2-NPs followed the sol-gel process with spherical morphology and an average size of 13.39 nm ± 2.28 nm. The results show how the TiO2-NP properties predominate over the crystallization processes, reflected in the decreasing crystallinity percentage from 5.2% to 0.6% in the membranes. On the other hand, when OEO and TiO2-NPs are introduced into a membrane, they act synergistically due to the inclusion of highly conjugated thermostable molecules and the thermal properties of TiO2-NPs. Finally, incorporating OEO and TiO2-NPs promotes tissue regeneration due to the decrease in inflammatory infiltrate and the appearance of connective tissue. These results demonstrate the great potential for biomedical applications of the membranes prepared.

8.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678672

RESUMO

The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.

9.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771312

RESUMO

Tissue engineering is crucial, since its early adoption focused on designing biocompatible materials that stimulate cell adhesion and proliferation. In this sense, scaffolds made of biocompatible and resistant materials became the researchers' focus on biomedical applications. Humans have used essential oils for a long time to take advantage of their antifungal, insecticide, antibacterial, and antioxidant properties. However, the literature demonstrating the use of essential oils for stimulating biocompatibility in new scaffold designs is scarce. For that reason, this work describes the synthesis of four different film composites of chitosan/polyvinyl alcohol/tea tree (Melaleuca alternifolia), essential oil (CS/PVA/TTEO), and the subdermal implantations after 90 days in Wistar rats. According to the Young modulus, DSC, TGA, mechanical studies, and thermal studies, there was a reinforcement effect with the addition of TTEO. Morphology and energy-dispersive (EDX) analysis after the immersion in simulated body fluid (SBF) exhibited a light layer of calcium chloride and sodium chloride generated on the material's surface, which is generally related to a bioactive material. Finally, the biocompatibility of the films was comparable with porcine collagen, showing better signs of resorption as the amount of TTEO was increased. These results indicate the potential application of the films in long-term biomedical needs.

10.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500714

RESUMO

Banana is a fruit grown mainly in tropical countries of the world. After harvest, almost 60% of banana biomass is left as waste. Worldwide, about 114.08 million metric tons of banana waste-loss are produced, leading to environmental problems such as the excessive emission of greenhouse gases. These wastes contain a high content of paramount industrial importance, such as cellulose, hemicellulose and natural fibers that various processes can modify, such as bacterial fermentation and anaerobic degradation, to obtain bioplastics, organic fertilizers and biofuels such as ethanol, biogas, hydrogen and biodiesel. In addition, they can be used in wastewater treatment methods by producing low-cost biofilters and obtaining activated carbon from rachis and banana peel. Furthermore, nanometric fibers commonly used in nanotechnology applications and silver nanoparticles useful in therapeutic cancer treatments, can be produced from banana pseudostems. The review aims to demonstrate the contribution of the recovery of banana production waste-loss towards a circular economy that would boost the economy of Latin America and many other countries of emerging economies.


Assuntos
Nanopartículas Metálicas/química , Musa/metabolismo , Prata/química , Biocombustíveis , Nanotecnologia/métodos
11.
Foods ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070789

RESUMO

The cocoa pod husk is considered a source of dietary fiber with a high content of water-soluble pectins, bioactive compounds which should be viewed as a by-product with the potential to be incorporated into food. This study aimed to investigate the effect of adding different cocoa pod husk flour (CPHF) levels as a starch replacement for reformulating frankfurters. Results showed that the addition of 1.5 and 3.0% pod husk proportionally increased the frankfurter's fiber content by 0.49 ± 0.08 and 0.96 ± 0.19 g/100 g, which is acceptable for a product that does not contain fiber. Textural properties and sensory characteristics were affected when substituting the starch with CPHF, either totally or partially, although these samples had higher water content, hardness, and adhesiveness while springiness decreased. Non-adverse effects of nitrite on polyphenolic compounds content were evidenced in samples enriched with CPHF. The incorporation of CPHF did not significantly affect the color parameters (ΔE < 3). Finally, the panelists indicated a sensation of the unsalted sausage, suggesting that CPHF may have natural mucoadhesion properties. In conclusion, in formulated meat products such as sausages, plant co-products such as cacao pod husks could be a valid new ingredient to improve technological parameters, functional characteristics, and stability.

12.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573272

RESUMO

Pears (Pyrus communis L.) cv. Packham's Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits' physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears' most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.


Assuntos
Quitosana/química , Conservação de Alimentos/métodos , Óleos Voláteis/farmacologia , Pyrus/química , Quitosana/farmacologia , Resposta ao Choque Frio/efeitos dos fármacos , Frutas/química , Fungos/efeitos dos fármacos , Humanos , Óleos Voláteis/química , Óleos de Plantas/química , Pyrus/efeitos dos fármacos , Pyrus/microbiologia , Ruta/química , Temperatura
13.
Life (Basel) ; 11(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504022

RESUMO

The use of dyes at an industrial level has become problematic, since the discharge of dye effluents into water disturbs the photosynthetic activity of numerous aquatic organisms by reducing the penetration of light and oxygen, in addition to causing carcinogenic diseases and mutagenic effects in humans, as well as alterations in different ecosystems. Chitosan (CS) is suitable for removing anionic dyes since it has favorable properties, such as acquiring a positive charge and a typical macromolecular structure of polysaccharides. In this study, the optimization of CS beads crosslinked with glutaraldehyde (GA) for the adsorption of reactive blue dye 4 (RB4) in an aqueous solution was carried out. In this sense, the response surface methodology (RSM) was applied to evaluate the concentration of CS, GA, and sodium hydroxide on the swelling degree in the GA-crosslinked CS beads. In the same way, RSM was applied to optimize the adsorption process of the RB4 dye as a function of the initial pH of the solution, initial concentration of the dye, and adsorbent dose. The crosslinking reaction was investigated by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), and X-ray diffractometry (XRD). The design described for the swelling degree showed an R2 (coefficient of determination) adjusted of 0.8634 and optimized concentrations (CS 3.3% w/v, GA 1.7% v/v, and NaOH 1.3 M) that were conveniently applied with a concentration of CS at 3.0% w/v to decrease the viscosity and facilitate the formation of the beads. In the RB4 dye adsorption design, an adjusted R2 (0.8280) with good correlation was observed, where the optimized conditions were: pH = 2, adsorbent dose 0.6 g, and initial concentration of RB4 dye 5 mg/L. The kinetic behavior and the adsorption isotherm allowed us to conclude that the GA-crosslinked CS beads' adsorption mechanism was controlled mainly by chemisorption interactions, demonstrating its applicability in systems that require the removal of contaminants with similar structures to the model presented.

14.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272702

RESUMO

The development of new biocompatible materials for application in the replacement of deteriorated tissues (due to accidents and diseases) has gained a lot of attention due to the high demand around the world. Tissue engineering offers multiple options from biocompatible materials with easy resorption. Chitosan (CS) is a biopolymer derived from chitin, the second most abundant polysaccharide in nature, which has been highly used for cell regeneration applications. In this work, CS films and Ruta graveolens essential oil (RGEO) were incorporated to obtain porous and resorbable materials, which did not generate allergic reactions. An oil-free formulation (F1: CS) and three different formulations containing R. graveolens essential oil were prepared (F2: CS-RGEO 0.5%; F3: CS+RGEO 1.0%; and F4: CS+RGEO 1.5%) to evaluate the effect of the RGEO incorporation in the mechanical and thermal stability of the films. Infrared spectroscopy (FTIR) analyses demonstrated the presence of RGEO. In contrast, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis showed that the crystalline structure and percentage of CS were slightly affected by the RGEO incorporation. Interesting saturation phenomena were observed for mechanical and water permeability tests when RGEO was incorporated at higher than 0.5% (v/v). The results of subdermal implantation after 30 days in Wistar rats showed that increasing the amount of RGEO resulted in greater resorption of the material, but also more significant inflammation of the tissue surrounding the materials. On the other hand, the thermal analysis showed that the RGEO incorporation almost did not affect thermal degradation. However, mechanical properties demonstrated an understandable loss of tensile strength and Young's modulus for F3 and F4. However, given the volatility of the RGEO, it was possible to generate a slightly porous structure, as can be seen in the microstructure analysis of the surface and the cross-section of the films. The cytotoxicity analysis of the CS+RGEO compositions by the hemolysis technique agreed with in vivo results of the low toxicity observed. All these results demonstrate that films including crude essential oil have great application potential in the biomedical field.


Assuntos
Quitosana/química , Óleos Voláteis/química , Ruta/química , Adulto , Animais , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria/métodos , Módulo de Elasticidade , Humanos , Masculino , Permeabilidade , Porosidade , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Difração de Raios X/métodos , Adulto Jovem
15.
Biomolecules ; 9(9)2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500281

RESUMO

Red Tilapia is one of the most consumed but perishable fish in the world. As a result, it requires preservation methods for safe consumption without affecting its organoleptic characteristics. Chitosan encapsulating essential oils have shown to be an excellent food conservation method. For that reason, we carried out the study of the protective effect on red Tilapia fillets with chitosan beads (CB) incorporated with Thymus capitatus (TCEO) essential oil at 500, 1000, and 2000 mg/L to assess the conservation of the fillets. The TCEO composition was characterized by gas chromatography-mass spectrometry (CG-MS). For the other side, CB was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), thermogravimetric analysis (TGA), and Scanning electron microscopy (SEM). The protective effect of the beads was tested against the Gram-positive and Gram-negative bacteria growth for four weeks. The results showed an inhibition effect in Gram-positive bacteria at higher TCEO concentration (1000 and 2000 mg/L). Besides that, the pH, total volatile basic nitrogen (T-BNV-N), color, and fillet texture were evaluated as quality attributes. The results suggested that the incorporation of the CB-TCEO allowed a higher contact of the active compounds with the food surface, which reflected more excellent stability. The quality attributes of the fillets were preserved for 26 days, suggesting its uses for the treatment for perishable food.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Óleos Voláteis/farmacologia , Thymus (Planta)/química , Animais , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Conservação de Alimentos , Armazenamento de Alimentos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Tilápia
16.
Biomolecules ; 9(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443462

RESUMO

Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.


Assuntos
Quitosana/química , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Armazenamento de Medicamentos , Psidium/química , Ruta/química , Temperatura , Antifúngicos/química , Antifúngicos/farmacologia , Fenômenos Químicos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Óleos Voláteis/química , Sensação , Solubilidade
17.
Int J Mol Sci ; 20(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208091

RESUMO

Acrylic bone cements (ABCs) have played a key role in orthopedic surgery mainly in arthroplasties, but their use is increasingly extending to other applications, such as remodeling of cancerous bones, cranioplasties, and vertebroplasties. However, these materials present some limitations related to their inert behavior and the risk of infection after implantation, which leads to a lack of attachment and makes necessary new surgical interventions. In this research, the physicochemical, thermal, mechanical, and biological properties of ABCs modified with chitosan (CS) and graphene oxide (GO) were studied. Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) scanning electron microscopy (SEM), Raman mapping, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), compression resistance, mechanical dynamic analysis (DMA), hydrolytic degradation, cell viability, alkaline phosphatase (ALP) activity with human osteoblasts (HOb), and antibacterial activity against Gram-negative bacteria Escherichia coli were used to characterize the ABCs. The results revealed good dispersion of GO nanosheets in the ABCs. GO provided an increase in antibacterial activity, roughness, and flexural behavior, while CS generated porosity, increased the rate of degradation, and decreased compression properties. All ABCs were not cytotoxic and support good cell viability of HOb. The novel formulation of ABCs containing GO and CS simultaneously, increased the thermal stability, flexural modulus, antibacterial behavior, and osteogenic activity, which gives it a high potential for its uses in orthopedic applications.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Cimentos Ósseos , Quitosana , Grafite , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Sobrevivência Celular , Quitosana/química , Grafite/química , Humanos , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
18.
Biomolecules ; 8(4)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469447

RESUMO

The strawberry is a fruit appreciated in the food industry for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pests of phytopathogenic origin, which decreases its shelf-life. Normally, to diminish the losses caused by pathogenic microbes, coatings of polysaccharides in combination with natural products like essential oils are applied. In this work, we describe the effect of edible coatings from chitosan (CT) incorporating Thymus capitatus essential oil (TCEO), applied to strawberries stored under refrigeration conditions (5 ± 0.5 °C). Different concentrations of TCEO were applied to chitosan coatings, with different effects on the physical and microbiological properties of the strawberries. All the products had greater acceptance and quality than the controls, being more effective those with essential oil incorporation. It is noteworthy that all the essential oil treatments lead to an increase in the shelf-life of strawberries of up to 15 days. Scanning electron microscopy (SEM) analysis of the microstructure showed a decrease in compactness with TCEO introduction, but without compromising food preservation after 15 days. In addition, treated strawberries delayed the loss of physicochemical and antioxidant properties, due to protection against the microbial development of aerobic mesophylls, molds, and yeasts.


Assuntos
Quitosana/farmacologia , Conservação de Alimentos , Fragaria/efeitos dos fármacos , Óleos Voláteis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Temperatura Baixa , Armazenamento de Alimentos , Fragaria/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Lamiaceae/química , Óleos Voláteis/química
19.
J Food Sci Technol ; 55(10): 4256-4265, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30228424

RESUMO

Chitosan-based coatings and films have been widely studied, demonstrating to be an efficient and eco-friendly approach to extend the shelf life of food products. The effect of incorporating Thymus capitatus essential oil (TCEO) at different concentrations (0.5, 1.0, and 1.5% w/w) on physical, mechanical and antimicrobial properties of chitosan films was studied. The antimicrobial activity of the films was evaluated by agar diffusion method, against 23 spoiling microorganisms isolated from tuna and swordfish (ten Shewanella baltica, one S. morhuae, one S. putrefaciens, two Pseudomonas fluorescens, two P. fragi, five Serratia spp., one Aeromonas molluscorum, and one Acinetobacter radioresistens) and Shewanella putrefaciens ATCC 49138. The films exerted antimicrobial activity against all the tested strain, although not proportional to increasing TCEO concentration. In particular, S. baltica was the most sensitive species and the inhibition was stable after 72 h. In general, TCEO incorporation in chitosan films, significantly (p < 0.05) decreased the water permeability (from 0.577 ± 0.060 gmm/kPahm2 at 61% R.U. for chitosan to 0.487 ± 0.037 gmm/kPahm2 for the film with 1.5% TCEO), the elongation at brake (from 27.322 ± 2.35% for chitosan to 14.695 ± 3.99% for the film with 1.5% TCEO) and increased the tensile strength (from 1.697 ± 0.16% for chitosan to 19.480 ± 2.86% for the film with 1.5% TCEO). Moisture content and water contact angle of the films also showed a similar trend with TCEO introduction, because of crosslinking reaction among the polymer chains and TCEO components. Scanning electron microscopy confirmed structure-properties relationships. These results suggest chitosan films incorporated with TCEO as an alternative treatment to inhibit the growth of degradative bacteria with potential application in the fish industry. The importance of testing more than one strain of the same bacteria species to evaluate the effectiveness of chitosan-essential oils coatings was also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA