Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 8664, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26489519

RESUMO

Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase activity becomes limiting: haploid cell populations senesce and generate aneuploid survivors--near diploids monosomic for chromosome VIII. This aneuploidy results in increased levels of the telomerase components TLC1, Est1 and Est3, and is accompanied by decreased abundance of ribosomal proteins. We propose that aneuploidy suppresses telomerase insufficiency through redistribution of cellular resources away from ribosome synthesis towards production of telomerase components and other non-ribosomal proteins. The aneuploidy-induced re-balance of the proteome via modulation of ribosome biogenesis may be a general adaptive response to overcome functional insufficiencies.


Assuntos
Aneuploidia , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Senescência Celular/genética , Diploide , Haploidia , RNA/genética , Proteínas Ribossômicas , Saccharomyces cerevisiae , Telomerase/deficiência , Homeostase do Telômero
2.
J Cell Biol ; 207(4): 481-98, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404745

RESUMO

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a "distribution box," transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


Assuntos
RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
3.
Nucleic Acids Res ; 42(19): 12189-99, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294836

RESUMO

During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1. In vivo binding sites for Rio1, Pno1 and Nob1 were mapped by UV cross-linking in actively growing cells. Nob1 and Pno1 bind overlapping regions within the internal transcribed spacer 1, and both bind directly over cleavage site D. Binding sites for Rio1 were within the core of the 18S rRNA, overlapping tRNA interaction sites and distinct from the related kinase Rio2. Site D cleavage occurs within pre-40S-60S complexes and Rio1-associated particles efficiently assemble into these complexes, whereas Pno1 appeared to be depleted relative to Nob1. We speculate that Rio1-mediated dissociation of Pno1 from cleavage site D is the trigger for final 18S rRNA maturation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Modelos Moleculares , Proteínas Nucleares/metabolismo , Clivagem do RNA , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
4.
Nature ; 505(7481): 112-116, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24240281

RESUMO

Eukaryotic ribosomes are assembled by a complex pathway that extends from the nucleolus to the cytoplasm and is powered by many energy-consuming enzymes. Nuclear export is a key, irreversible step in pre-ribosome maturation, but mechanisms underlying the timely acquisition of export competence remain poorly understood. Here we show that a conserved Saccharomyces cerevisiae GTPase Nug2 (also known as Nog2, and as NGP-1, GNL2 or nucleostemin 2 in human) has a key role in the timing of export competence. Nug2 binds the inter-subunit face of maturing, nucleoplasmic pre-60S particles, and the location clashes with the position of Nmd3, a key pre-60S export adaptor. Nug2 and Nmd3 are not present on the same pre-60S particles, with Nug2 binding before Nmd3. Depletion of Nug2 causes premature Nmd3 binding to the pre-60S particles, whereas mutations in the G-domain of Nug2 block Nmd3 recruitment, resulting in severe 60S export defects. Two pre-60S remodelling factors, the Rea1 ATPase and its co-substrate Rsa4, are present on Nug2-associated particles, and both show synthetic lethal interactions with nug2 mutants. Release of Nug2 from pre-60S particles requires both its K(+)-dependent GTPase activity and the remodelling ATPase activity of Rea1. We conclude that Nug2 is a regulatory GTPase that monitors pre-60S maturation, with release from its placeholder site linked to recruitment of the nuclear export machinery.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Genes Letais/genética , Modelos Moleculares , Mutação/genética , Potássio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Nat Struct Mol Biol ; 19(8): 744-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751017

RESUMO

In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of Fun12, the yeast homolog of cytoplasmic translation initiation factor eIF5b. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associated with Fun12 and formed 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Fator de Iniciação 2 em Eucariotos/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
6.
EMBO J ; 30(9): 1790-803, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21460797

RESUMO

A key question in nuclear RNA surveillance is how target RNAs are recognized. To address this, we identified in vivo binding sites for nuclear RNA surveillance factors, Nrd1, Nab3 and the Trf4/5­Air1/2­Mtr4 polyadenylation (TRAMP) complex poly(A) polymerase Trf4, by UV crosslinking. Hit clusters were reproducibly found over known binding sites on small nucleolar RNAs (snoRNAs), pre-mRNAs and cryptic, unstable non-protein-coding RNAs (ncRNAs) ('CUTs'), along with ~642 predicted long anti-sense ncRNAs (asRNAs), ~178 intergenic ncRNAs and, surprisingly, ~1384 mRNAs. Five putative asRNAs tested were confirmed to exist and were stabilized by loss of Nrd1, Nab3 or Trf4. Mapping of micro-deletions and substitutions allowed clear definition of preferred, in vivo Nab3 and Nrd1 binding sites. Nrd1 and Nab3 were believed to be Pol II specific but, unexpectedly, bound many oligoadenylated Pol III transcripts, predominately pre-tRNAs. Depletion of Nrd1 or Nab3 stabilized tested Pol III transcripts and their oligoadenylation was dependent on Nrd1­Nab3 and TRAMP. Surveillance targets were enriched for non-encoded A-rich tails. These were generally very short (1­5 nt), potentially explaining why adenylation destabilizes these RNAs while stabilizing mRNAs with long poly(A) tails.


Assuntos
Sítios de Ligação/genética , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Nucleares/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Northern Blotting , Regulação Fúngica da Expressão Gênica/fisiologia , Biblioteca Gênica , Dados de Sequência Molecular , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase III/genética , Saccharomyces cerevisiae , Análise de Sequência de DNA
7.
Nucleic Acids Res ; 34(10): 3189-99, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16772403

RESUMO

While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the K(M) for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , RNA Helicases DEAD-box , Hidrólise , Proteínas Nucleares/química , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/química
8.
Nucleic Acids Res ; 31(7): 1877-87, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12655004

RESUMO

Ribosome biogenesis requires a vast number of trans-acting factors many of which are required for the chemical modification and processing of the pre-rRNA component. The U3 snoRNP complex is required for the early cleavage steps in pre-rRNA processing. We have cloned cDNAs encoding the human and mouse homologs of the yeast U3 snoRNP-associated proteins Imp3 and Imp4. Both human proteins localize to nucleoli and interact with the U3 snoRNA. The results of complementation experiments show that, in contrast to mouse Imp4, mouse Imp3 can partially alleviate the growth defect of the corresponding yeast null strain, indicating that the role of Imp3 in pre-rRNA processing is evolutionarily conserved. The results of density gradient centrifugation experiments show that, in contrast to hU3-55K, the human Imp3 and Imp4 proteins predominantly interact with the U3 snoRNA in 60-80S ribonucleoprotein complexes. In addition, we have found that hImp3, hImp4 and hMpp10 can form a stable hetero-trimeric complex in vitro, which is generated by direct interactions of both hImp3 and hImp4 with hMpp10. The analysis of hImp3 and hImp4 mutants indicated that their binding to hMpp10 correlates with their nucleolar accumulation, strongly suggesting that the formation of the ternary complex of hImp3, hImp4 and hMpp10 is required for their association with nucleolar components.


Assuntos
Fosfoproteínas/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Sítios de Ligação , Nucléolo Celular/metabolismo , Clonagem Molecular , DNA Complementar/genética , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA