Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 473: 186-193, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29409957

RESUMO

It has been reported that the incretin system, including regulated GLP-1 secretion and locally expressed DPP-4, is present in pancreatic islets. In this study we comprehensively evaluated the expression and role of DPP-4 in islet alpha and beta cells from non-diabetic (ND) and type 2 diabetic (T2D) individuals, including the effects of its inhibition on beta cell function and survival. Isolated islets were prepared from 25 ND and 18 T2D organ donors; studies were also performed with the human insulin-producing EndoC-ßH1 cells. Morphological (including confocal microscopy), ultrastructural (electron microscopy, EM), functional (glucose-stimulated insulin secretion), survival (EM and nuclear dyes) and molecular (RNAseq, qPCR and western blot) studies were performed under several different experimental conditions. DPP-4 co-localized with glucagon and was also expressed in human islet insulin-containing cells. Furthermore, DPP-4 was expressed in EndoC-ßH1 cells. The proportions of DPP-4 positive alpha and beta cells and DPP-4 gene expression were significantly lower in T2D islets. A DPP-4 inhibitor protected ND human beta cells and EndoC-ßH1 cells against cytokine-induced toxicity, which was at least in part independent from GLP1 and associated with reduced NFKB1 expression. Finally, DPP-4 inhibition augmented glucose-stimulated insulin secretion, reduced apoptosis and improved ultrastructure in T2D beta cells. These results demonstrate the presence of DPP-4 in human islet alpha and beta cells, with reduced expression in T2D islets, and show that DPP-4 inhibition has beneficial effects on human ND and T2D beta cells. This suggests that DPP-4, besides playing a role in incretin effects, directly affects beta cell function and survival.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidase 4/metabolismo , Células Secretoras de Insulina/enzimologia , Idoso , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/toxicidade , Citoproteção/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/ultraestrutura , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA