Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Commun Chem ; 7(1): 168, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085342

RESUMO

Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.

2.
Cancer Discov ; 14(8): 1457-1475, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.


Assuntos
Helicase da Síndrome de Werner , Humanos , Helicase da Síndrome de Werner/genética , Camundongos , Animais , Instabilidade de Microssatélites , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
3.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214784

RESUMO

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Vírus da Influenza A , Influenza Humana , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas , Hiperglicemia/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
RSC Chem Biol ; 4(12): 1111-1122, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033723

RESUMO

The synthesis and characterisation of fluorosulfate covalent inhibitors of the lipid kinase PI4KIIIß is described. The conserved lysine residue located within the ATP binding site was targeted, and optimised compounds based upon reversible inhibitors with good activity and physicochemical profile showed strong reversible interactions and slow onset times for the covalent inhibition, resulting in an excellent selectivity profile for the lipid kinase target. X-Ray crystallography demonstrated a distal tyrosine residue could also be targeted using a fluorosulfate strategy. Combination of this knowledge showed that a dual covalent inhibitor could be developed which reveals potential in addressing the challenges associated with drug resistant mutations.

5.
RSC Med Chem ; 14(4): 671-679, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122547

RESUMO

The screening of covalent or 'reactive' fragment libraries against proteins is becoming an integral approach in hit identification, enabling the development of targeted covalent inhibitors and tools. To date, reactive fragment screening has been limited to targeting cysteine residues, thus restricting applicability across the proteome. Carboxylate residues present a unique opportunity to expand the accessible residues due to high proteome occurrence (∼12%). Herein, we present the development of a carboxylate-targeting reactive fragment screening platform utilising 2-aryl-5-carboxytetrazole (ACT) as the photoreactive functionality. The utility of ACT photoreactive fragments (ACT-PhABits) was evaluated by screening a 546-membered library with a small panel of purified proteins. Hits identified for BCL6 and KRASG12D were characterised by LC-MS/MS studies, revealing the selectivity of the ACT group. Finally, a photosensitised approach to ACT activation was developed, obviating the need for high energy UV-B light.

6.
STAR Protoc ; 3(3): 101590, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35942343

RESUMO

Directly ex vivo, peptide-specific CD8+ T cells are present at relatively low frequency and are typically in a resting state. This protocol details the expansion of memory peptide-specific CD8+ T cells by in vitro stimulation, which can be subsequently characterized using a range of assays including tetramer staining and intracellular cytokine staining. For complete details on the use and execution of this protocol, please refer to Lineburg et al. (2021).


Assuntos
Linfócitos T CD8-Positivos , Peptídeo T , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Humanos , Peptídeo T/metabolismo , Peptídeos/farmacologia
7.
PLoS One ; 17(5): e0268300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617163

RESUMO

Chemoresistance poses a great barrier to breast cancer treatment and is thought to correlate with increased matrix stiffness. We developed two-dimensional (2D) polyacrylamide (PAA) and three-dimensional (3D) alginate in vitro models of tissue stiffness that mimic the stiffness of normal breast and breast cancer. We then used these to compare cell viability in response to chemotherapeutic treatment. In both 2D and 3D we observed that breast cancer cell growth and size was increased at a higher stiffness corresponding to tumours compared to normal tissue. When chemotherapeutic response was measured, a specific differential response in cell viability was observed for gemcitabine in 2 of the 7 breast cancer cell lines investigated. MCF7 and T-47D cell lines showed gemcitabine resistance at 4 kPa compared to 500 Pa. These cell lines share a common phenotype of progesterone receptor (PGR) expression and, indeed, pre-treatment with the selective progesterone receptor modulator (SPRM) mifepristone abolished resistance to gemcitabine at high stiffness. Our data reveals that combined treatment with SPRMs may therefore help in reducing resistance to gemcitabine in stiffer breast tumours which are PGR positive.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Feminino , Humanos , Progesterona/uso terapêutico , Receptores de Progesterona/metabolismo , Gencitabina
8.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196796

RESUMO

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , COVID-19/genética , COVID-19/virologia , Sequência Conservada , Coronavirus/química , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , Células T de Memória/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Cells ; 10(10)2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685626

RESUMO

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito T/química , Antígeno HLA-A2/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Linfócitos T CD8-Positivos/citologia , Cristalografia por Raios X , Citocinas/metabolismo , Epitopos/química , Antígeno HLA-A2/química , Humanos , Mutação , Peptídeos/química , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Ressonância de Plasmônio de Superfície , Linfócitos T Citotóxicos/imunologia
10.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33945786

RESUMO

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Coronavirus/classificação , Coronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Reações Cruzadas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/imunologia , Humanos , Epitopos Imunodominantes/química , Memória Imunológica , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
11.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562731

RESUMO

The distinct properties of allo-reactive T-cell repertoires are not well understood. To investigate whether auto-reactive and allo-reactive T-cell repertoires encoded distinct properties, we used dextramer enumeration, enrichment, single-cell T-cell receptor (TCR) sequencing and multiparameter analysis. We found auto-reactive and allo-reactive T-cells differed in mean ex vivo frequency which was antigen dependent. Allo-reactive T-cells showed clear differences in TCR architecture, with enriched usage of specific T-cell receptor variable (TRBJ) genes and broader use of T-cell receptor variable joining (TRBJ) genes. Auto-reactive T-cell repertoires exhibited complementary determining regions three (CDR3) lengths using a Gaussian distribution whereas allo-reactive T-cell repertoires exhibited distorted patterns in CDR3 length. CDR3 loops from allo-reactive T-cells showed distinct physical-chemical properties, tending to encode loops that were more acidic in charge. Allo-reactive T-cell repertoires differed in diversity metrics, tending to show increased overall diversity and increased homogeneity between repertoires. Motif analysis of CDR3 loops showed allo-reactive T-cell repertoires differed in motif preference which included broader motif use. Collectively, these data conclude that allo-reactive T-cell repertoires are indeed different to auto-reactive repertoires and provide tangible metrics for further investigations and validation. Given that the antigens studied here are overexpressed on multiple cancers and that allo-reactive TCRs often show increased ligand affinity, this new TCR bank also has translational potential for adoptive cell therapy, soluble TCR-based therapy and rational TCR design.


Assuntos
Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA , Análise de Célula Única/métodos , Linfócitos T/química
12.
Angew Chem Int Ed Engl ; 59(47): 21096-21105, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745361

RESUMO

Advances in genomic analyses enable the identification of new proteins that are associated with disease. To validate these targets, tool molecules are required to demonstrate that a ligand can have a disease-modifying effect. Currently, as tools are reported for only a fraction of the proteome, platforms for ligand discovery are essential to leverage insights from genomic analyses. Fragment screening offers an efficient approach to explore chemical space. Presented here is a fragment-screening platform, termed PhABits (PhotoAffinity Bits), which utilizes a library of photoreactive fragments to covalently capture fragment-protein interactions. Hits can be profiled to determine potency and the site of crosslinking, and subsequently developed as reporters in a competitive displacement assay to identify novel hit matter. The PhABit platform is envisioned to be widely applicable to novel protein targets, identifying starting points in the development of therapeutics.


Assuntos
Antineoplásicos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Reagentes de Ligações Cruzadas/química , Marcadores de Fotoafinidade/química , Pirazóis/análise , Quinoxalinas/análise , Sulfonamidas/análise , Vemurafenib/análise , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Ligantes , Estrutura Molecular , Proteínas/antagonistas & inibidores , Proteínas/química , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Vemurafenib/farmacologia
13.
Angew Chem Int Ed Engl ; 58(48): 17322-17327, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31518032

RESUMO

The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe-based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.


Assuntos
Marcadores de Afinidade/química , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/química , Ligação Competitiva , Ensaios de Seleção de Medicamentos Antitumorais , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Roscovitina , Relação Estrutura-Atividade
14.
Oncogenesis ; 8(5): 29, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988276

RESUMO

Micronuclei represent the cellular attempt to compartmentalize DNA to maintain genomic integrity threatened by mitotic errors and genotoxic events. Some micronuclei show aberrant nuclear envelopes (NEs) that collapse, generating damaged DNA that can promote complex genome alterations. However, ruptured micronuclei also provide a pool of cytosolic DNA that can stimulate antitumor immunity, revealing the complexity of micronuclear impact on tumor progression. The ESCRT-III (Endosomal Sorting Complex Required for Transport-III) complex ensures NE reseals during late mitosis and is repaired in interphase. Therefore, ESCRT-III activity maybe crucial for maintaining the integrity of other genomic structures enclosed by a NE. ESCRT-III activity at the NE is coordinated by the subunit CHMP7. We show that CHMP7 and ESCRT-III protect against the genomic instability associated with micronuclei formation. Loss of ESCRT-III activity increases the population of micronuclei with ruptured NEs, revealing that its NE repair activity is also necessary to maintain micronuclei integrity. Surprisingly, aberrant accumulation of ESCRT-III are found at the envelope of most acentric collapsed micronuclei, suggesting that ESCRT-III is not recycled efficiently from these structures. Moreover, CHMP7 depletion relieves micronuclei from the aberrant accumulations of ESCRT-III. CHMP7-depleted cells display a reduction in micronuclei containing the DNA damage marker RPA and a sensor of cytosolic DNA. Thus, ESCRT-III activity appears to protect from the consequence of genomic instability in a dichotomous fashion: ESCRT-III membrane repair activity prevents the occurrence of micronuclei with weak envelopes, but the aberrant accumulation of ESCRT-III on a subset of micronuclei appears to exacerbate DNA damage and sustain proinflammatory pathways.

15.
DNA Repair (Amst) ; 61: 25-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179156

RESUMO

Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.


Assuntos
Antineoplásicos/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico , Mitose/genética , Fenótipo , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante
16.
DNA Repair (Amst) ; 52: 81-91, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254358

RESUMO

Poly(ADP-ribosylation) of proteins following DNA damage is well studied and the use of poly(ADP-ribose) polymerase (PARP) inhibitors as therapeutic agents is an exciting prospect for the treatment of many cancers. Poly(ADP-ribose) glycohydrolase (PARG) has endo- and exoglycosidase activities which can cleave glycosidic bonds, rapidly reversing the action of PARP enzymes. Like addition of poly(ADP-ribose) (PAR) by PARP, removal of PAR by PARG is also thought to be required for repair of DNA strand breaks and for continued replication at perturbed forks. Here we use siRNA to show a synthetic lethal relationship between PARG and BRCA1, BRCA2, PALB2, FAM175A (ABRAXAS) and BARD1. In addition, we demonstrate that MCF7 cells depleted of these proteins are sensitive to Gallotannin and a novel and specific PARG inhibitor PDD00017273. We confirm that PARG inhibition increases endogenous DNA damage, stalls replication forks and increases homologous recombination, and propose that it is the lack of homologous recombination (HR) proteins at PARG inhibitor-induced stalled replication forks that induces cell death. Interestingly not all genes that are synthetically lethal with PARP result in sensitivity to PARG inhibitors, suggesting that although there is overlap, the functions of PARP and PARG may not be completely identical. These data together add further evidence to the possibility that single treatment therapy with PARG inhibitors could be used for treatment of certain HR deficient tumours and provide insight into the relationship between PARP, PARG and the processes of DNA repair.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Glicosídeo Hidrolases/antagonistas & inibidores , Recombinação Homóloga , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , DNA/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/fisiologia , Humanos , Taninos Hidrolisáveis/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Biol Chem ; 398(9): 1027-1036, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28141543

RESUMO

It has widely been accepted that major histocompatibility complex class I molecules (MHC-I) are limited to binding small peptides of 8-10 residues in length. However, this consensus has recently been challenged with the identification of longer peptides (≥11 residues) that can also elicit cytotoxic CD8+ T cell responses. Indeed, a growing number of studies demonstrate that these non-canonical epitopes are important targets for the immune system. As long epitopes represent up to 10% of the peptide repertoire bound to MHC-I molecules, here we review their impact on antigen presentation by MHC-I, TCR recognition, and T cell immunity.


Assuntos
Epitopos/química , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/química , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
18.
Curr Opin Virol ; 22: 77-88, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28086150

RESUMO

CD27 is a co-stimulatory immune-checkpoint receptor, constitutively expressed on a broad range of T-cells (αß and γδ), NK-cells and B-cells. Ligation of CD27 with CD70 results in potent co-stimulatory effects. In mice, co-stimulation of CD8+ T-cells through CD27 promotes immune activation and enhances primary, secondary, memory and recall responses towards viral infections. Limited in vitro human studies support mouse experiments and show that CD27 co-stimulation enhances antiviral T-cell immunity. Given the potent co-stimulatory effects of CD27, manipulating CD27 signalling is of interest for viral, autoimmune and anti-tumour immunotherapies. This review focuses on the role of CD27 co-stimulation in anti-viral T-cell immunity and discusses clinical studies utilising the CD27 co-stimulation pathway for anti-viral, anti-tumour and autoimmune immunotherapy.


Assuntos
Linfócitos T/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Vírus/imunologia , Animais , Ligante CD27/metabolismo , Humanos , Camundongos
19.
Immunol Cell Biol ; 95(1): 77-86, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507557

RESUMO

Epstein-Barr virus (EBV) is one of the most common viruses in humans, capable of causing life-threatening infections and cancers in immunocompromised individuals. Although CD8+ T cells provide key protection against EBV, the persistence and dynamics of specific T-cell receptor (TCR) clones during immunosuppression in transplant patients is largely unknown. For the first time, we used a novel single-cell TCRαß multiplex-nested reverse transcriptase PCR to dissect TCRαß clonal diversity within GLCTLVAML (GLC)-specific CD8+ T cells in healthy individuals and immunocompromised lung transplant recipients. The GLC peptide presented by HLA-A*02:01 is one of the most immunogenic T-cell targets from the EBV proteome. We found that the GLC-specific TCRαß repertoire was heavily biased toward TRAV5 and encompassed five classes of public TCRαßs, suggesting that these clonotypes are preferentially utilized following infection. We identified that a common TRAV5 was diversely paired with different TRAJ and TRBV/TRBJ genes, in both immunocompetent and immunocompromised individuals, with an average of 12 different TCRαß clonotypes/donor. Moreover, pre-transplant GLC-specific TCRαß repertoires were relatively stable over 1 year post transplant under immunosuppression in the absence or presence of EBV reactivation. In addition, we provide the first evidence of early GLC-specific CD8+ T cells at 87 days post transplant, which preceded clinical EBV detection at 242 days in an EBV-seronegative patient receiving a lung allograft from an EBV-seropositive donor. This was associated with a relatively stable TCRαß repertoire after CD8+ T-cell expansion. Our findings provide insights into the composition and temporal dynamics of the EBV-specific TCRαß repertoire in immunocompromised transplant patients and suggest that the early detection of EBV-specific T cells might be a predictor of ensuing EBV blood viremia.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Terapia de Imunossupressão , Transplante de Pulmão , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transplantados , Aloenxertos/imunologia , Sequência de Aminoácidos , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Humanos , Peptídeos/metabolismo , Doadores de Tecidos , Ativação Viral
20.
J Biol Chem ; 291(47): 24335-24351, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27645996

RESUMO

αßT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear, with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity have been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M158, respectively) or with the hepatitis C and influenza viruses (NS31073 and NA231, respectively). Given the high sequence similarity of these paired viral epitopes (56 and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell αßTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine whether they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct αßTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Herpesvirus Humano 4/imunologia , Vírus da Influenza A/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Transativadores/imunologia , Proteínas da Matriz Viral/imunologia , Epitopos de Linfócito T/genética , Feminino , Antígeno HLA-A2/genética , Herpesvirus Humano 4/genética , Humanos , Vírus da Influenza A/genética , Masculino , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transativadores/genética , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA