RESUMO
BACKGROUND: Cellular energy failure in high metabolic rate organs is one of the underlying causes for many disorders such as neurodegenerative diseases, cardiomyopathies, liver and renal failures. In the past decade, numerous studies have discovered the cellular axis of LKB1/AMPK/mTOR as an essential modulator of cell homeostasis in response to energy stress. Through regulating adaptive mechanisms, this axis adjusts the energy availability to its demand by a systematized control on metabolism. Energy stress, however, could be sensed at different levels in various tissues, leading to applying different strategies in response to hypoxic insults. METHODS: Here the immediate strategies of high metabolic rate organs to time-dependent short episodes of ischaemia were studied by using a rat model (n = 6/group) of cardiac arrest (CA) (15 and 30 s, 1, 2, 4 and 8 min CA). Using western blot analysis, we examined the responses of LKB1/AMPK/mTOR pathway in brain, heart, liver and kidney from 15 s up to 8 min of global ischaemia. The ratio of ADP/ATP was assessed in all ischemic and control groups, using ApoSENSOR bioluminescent assay kit. RESULTS: Brain, followed by kidney showed the early dephosphorylation response in AMPK (Thr172) and LKB1 (Ser431); in the absence of ATP decline (ADP/ATP elevation). Dephosphorylation of AMPK was followed by rephosphorylation and hyperphosphorylation, which was associated with a significant ATP decline. While heart's activity of AMPK and LKB1 remained at the same level during short episodes of ischaemia, liver's LKB1 was dephosphorylated after 2 min. AMPK response to ischaemia in liver was mainly based on an early alternative and a late constant hyperphosphorylation. No significant changes was observed in mTOR activity in all groups. CONCLUSION: Together our results suggest that early AMPK dephosphorylation followed by late hyperphosphorylation is the strategy of brain and kidney in response to ischaemia. While the liver seemed to get benefit of its AMPK system in early ischameia, possibly to stabilize ATP, the level of LKB1/AMPK activity in heart remained unchanged in short ischaemic episodes up to 8 min. Further researches must be conducted to elucidate the molecular mechanism underlying LKB1/AMPK response to oxygen supply.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Parada Cardíaca/metabolismo , Parada Cardíaca/patologia , Isquemia/metabolismo , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Modelos Animais de Doenças , Eletrocardiografia , Isquemia/patologia , Rim/irrigação sanguínea , Rim/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Miocárdio/patologia , Fosforilação , Ratos Sprague-DawleyRESUMO
An increase in phosphorylated tau (p-tau) is associated with Alzheimer's disease (AD), and brain hypoxia. Investigation of the association of residue-specific tau hyperphosphorylation and changes in cognition, leads to greater understanding of its potential role in the pathology of memory impairment. The aims of this study are to investigate the involvement of the main metabolic kinases, Liver Kinase B1 (LKB1) and Adenosine Monophosphate Kinase Protein Kinase (AMPK), in tau phosphorylation-derived memory impairment, and to study the potential contribution of the other tau kinases and phosphatases including Glycogen Synthase Kinase (GSK-3ß), Protein kinase A (PKA) and Protein Phosphatase 2A (PP2A). Spatial memory and learning were tested in a rat global brain ischemic model of reversible cardiac arrest (CA). The phosphorylation levels of LKB1, AMPK, GSK-3ß, PP2A, PKA and tau-specific phosphorylation were assessed in rats, subjected to ischaemia/reperfusion and in clinically diagnosed AD and normal human brains. LKB1 and AMPK phosphorylation increased 4 weeks after CA as did AMPK related p-tau (Ser262). The animals showed unchanged levels of GSK-3ß specific p-tau (Ser202/Thr205), phospho-PP2A (Tyr307), total GSK-3ß, PP2A, phospho-cAMP response element-binding protein (CREB) which is an indicator of PKA activity, and no memory deficits. AD brains had hyperphosphorylated tau in all the residues of Ser262, Ser202 and Thr205, with increased phosphorylation of both AMPK (Thr172) and GSK-3ß (Ser9), and reduced PP2A levels. Our data suggests a crucial role for a combined activation of tau kinases and phosphatases in adversely affecting memory and that hyperphosphorylation of tau in more than one specific site may be required to create memory deficits.
RESUMO
Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3ß, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3ß sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3ß and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3ß or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.