Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39016685

RESUMO

Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.


Assuntos
Lisossomos , Neurofibromina 1 , Humanos , Lisossomos/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neurofibromatose 1/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Autofagia/efeitos dos fármacos , Mutações Sintéticas Letais , Transporte Proteico/efeitos dos fármacos
2.
Nat Commun ; 10(1): 1757, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988284

RESUMO

Cyclin-dependent kinase 12 (CDK12) modulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA polymerase II and selectively affects the expression of genes involved in the DNA damage response (DDR) and mRNA processing. Yet, the mechanisms underlying such selectivity remain unclear. Here we show that CDK12 inhibition in cancer cells lacking CDK12 mutations results in gene length-dependent elongation defects, inducing premature cleavage and polyadenylation (PCPA) and loss of expression of long (>45 kb) genes, a substantial proportion of which participate in the DDR. This early termination phenotype correlates with an increased number of intronic polyadenylation sites, a feature especially prominent among DDR genes. Phosphoproteomic analysis indicated that CDK12 directly phosphorylates pre-mRNA processing factors, including those regulating PCPA. These results support a model in which DDR genes are uniquely susceptible to CDK12 inhibition primarily due to their relatively longer lengths and lower ratios of U1 snRNP binding to intronic polyadenylation sites.


Assuntos
Quinases Ciclina-Dependentes/genética , Dano ao DNA , Reparo do DNA/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Modelos Moleculares , Fosforilação , Poliadenilação , Processamento Pós-Transcricional do RNA , Espectrometria de Massas em Tandem
4.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29472314

RESUMO

Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacologia , Proteínas de Membrana/metabolismo , Domínios PDZ/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Proteínas da Matriz do Complexo de Golgi , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Metilação , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular
5.
Anal Bioanal Chem ; 409(19): 4615-4625, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28555341

RESUMO

Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Fluorbenzenos/isolamento & purificação , Concentração de Íons de Hidrogênio , Fenóis/isolamento & purificação , Fosfoproteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA