Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
2.
Lancet Infect Dis ; 20(12): 1381-1389, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32822577

RESUMO

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timeliness of contact tracing, potentially reducing R by 26% (95% UI 14-35) on top of reductions achieved by self-isolation following symptoms, if 80% of cases and contacts are identified and there is immediate testing following symptom onset and quarantine of contacts within 24 h. Among currently available antibody tests, performance has been highly variable, with specificity around 90% or lower for rapid diagnostic tests and 95-99% for laboratory-based ELISA and chemiluminescent assays. INTERPRETATION: Molecular testing can play an important role in prevention of SARS-CoV-2 transmission, especially among health-care workers and other high-risk groups, but no single strategy will reduce R below 1 at current levels of population immunity. Immunity passports based on antibody tests or tests for infection face substantial technical, legal, and ethical challenges. FUNDING: UK Medical Research Council.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Programas de Rastreamento/métodos , Infecções Assintomáticas , Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/transmissão , Busca de Comunicante , Pessoal de Saúde , Humanos , Modelos Teóricos , Quarentena , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
3.
PLoS Med ; 14(6): e1002323, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28604777

RESUMO

BACKGROUND: Pakistan currently provides a substantial challenge to global polio eradication, having contributed to 73% of reported poliomyelitis in 2015 and 54% in 2016. A better understanding of the risk factors and movement patterns that contribute to poliovirus transmission across Pakistan would support evidence-based planning for mass vaccination campaigns. METHODS AND FINDINGS: We fit mixed-effects logistic regression models to routine surveillance data recording the presence of poliomyelitis associated with wild-type 1 poliovirus in districts of Pakistan over 6-month intervals between 2010 to 2016. To accurately capture the force of infection (FOI) between districts, we compared 6 models of population movement (adjacency, gravity, radiation, radiation based on population density, radiation based on travel times, and mobile-phone based). We used the best-fitting model (based on the Akaike Information Criterion [AIC]) to produce 6-month forecasts of poliomyelitis incidence. The odds of observing poliomyelitis decreased with improved routine or supplementary (campaign) immunisation coverage (multivariable odds ratio [OR] = 0.75, 95% confidence interval [CI] 0.67-0.84; and OR = 0.75, 95% CI 0.66-0.85, respectively, for each 10% increase in coverage) and increased with a higher rate of reporting non-polio acute flaccid paralysis (AFP) (OR = 1.13, 95% CI 1.02-1.26 for a 1-unit increase in non-polio AFP per 100,000 persons aged <15 years). Estimated movement of poliovirus-infected individuals was associated with the incidence of poliomyelitis, with the radiation model of movement providing the best fit to the data. Six-month forecasts of poliomyelitis incidence by district for 2013-2016 showed good predictive ability (area under the curve range: 0.76-0.98). However, although the best-fitting movement model (radiation) was a significant determinant of poliomyelitis incidence, it did not improve the predictive ability of the multivariable model. Overall, in Pakistan the risk of polio cases was predicted to reduce between July-December 2016 and January-June 2017. The accuracy of the model may be limited by the small number of AFP cases in some districts. CONCLUSIONS: Spatiotemporal variation in immunization performance and population movement patterns are important determinants of historical poliomyelitis incidence in Pakistan; however, movement dynamics were less influential in predicting future cases, at a time when the polio map is shrinking. Results from the regression models we present are being used to help plan vaccination campaigns and transit vaccination strategies in Pakistan.


Assuntos
Poliomielite/epidemiologia , Poliovirus/fisiologia , Vigilância da População , Humanos , Imunização , Incidência , Modelos Logísticos , Paquistão/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Poliovirus/imunologia , Fatores de Risco , Sorogrupo , Análise Espaço-Temporal
4.
Ophthalmic Epidemiol ; 22(6): 394-402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26653262

RESUMO

PURPOSE: Trachoma control programs are underway in endemic regions worldwide. They are based on the SAFE strategy (Surgery for trichiasis, Antibiotic distribution, Facial cleanliness, and Environmental improvement). Although much is known about the effect of community-wide treatment with antibiotics on the prevalence of Chlamydia trachomatis, the impact of the SAFE strategy on severe ocular disease sequelae (the main focus of the Global Elimination of blinding Trachoma by 2020 program) remains largely unknown. METHODS: We use a mathematical model to explore the impact of each of the components of the SAFE strategy, individually and together, on disease sequelae, arising from repeat infection and subsequent conjunctival scarring. We ask whether two elimination goals, to reduce the prevalence of trachomatous trichiasis to 1 per 1000 persons, and the incidence of corneal opacity to 1 per 10,000 persons per annum, are achievable, and which combinations of interventions have the greatest impact on these indicators. RESULTS: In high prevalence communities (here, >20% infection of children aged 1-9 years), a combination of efforts is needed to bring down sustainably the prevalence and incidence of ocular disease sequelae. CONCLUSION: The mass delivery of antibiotics is highly beneficial for the clearance of infection, inflammation and prevention of subsequent scarring, but needs to be supplemented with sustained reductions in transmission and surgery to consider realistically the elimination of blindness by the year 2020.


Assuntos
Promoção da Saúde/métodos , Modelos Teóricos , Tracoma/prevenção & controle , Triquíase/prevenção & controle , Adolescente , Adulto , Idoso , Antibacterianos/administração & dosagem , Cegueira/prevenção & controle , Criança , Pré-Escolar , Saúde Ambiental , Feminino , Saúde Global , Humanos , Higiene , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Oftalmológicos , Prevalência , Tracoma/epidemiologia , Triquíase/epidemiologia , Adulto Jovem
5.
Lancet Infect Dis ; 7(6): 420-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17521595

RESUMO

Mass antibiotic treatment and facial cleanliness are central to WHO's strategy for the elimination of blindness caused by trachoma. Recent studies have highlighted the heterogeneous response of communities to mass treatment and the complex relation between infection with Chlamydia trachomatis and clinical disease. It is important to be able to explain these findings to predict and maximise the effect of treatment on active trachoma disease and blindness in the community. Here we review the immunobiology of trachoma and provide a simple conceptual model of disease pathogenesis. We show how incorporating this model into a mathematical framework leads to an explanation of the observed community distribution of infection, bacterial load, and disease with age. The predictions of the model and empirical data show some differences that underscore the importance of individual heterogeneity in response to infection. The implications of disease transmission and pathogenesis for trachoma control programmes are discussed.


Assuntos
Cegueira/prevenção & controle , Tracoma/prevenção & controle , Tracoma/transmissão , Antibacterianos/uso terapêutico , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Progressão da Doença , Saúde Global , Humanos , Higiene , Modelos Estatísticos , Programas Nacionais de Saúde , Tracoma/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA