Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(4): 1135-1149, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598844

RESUMO

Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE: Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.


Assuntos
Células Supressoras Mieloides , NADPH Oxidase 2 , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Feminino , Humanos , Masculino , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Período Pós-Operatório , Espécies Reativas de Oxigênio/metabolismo
2.
Oncoimmunology ; 11(1): 2115618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046810

RESUMO

Type 1 conventional dendritic cells (cDC1) efficiently cross-present antigens that prime cytotoxic CD8+ T cells. cDC1 therefore constitute conceivable targets in cancer vaccine development. We generated recombinant fusion cancer vaccines that aimed to concomitantly deliver tumor antigen and adjuvant to CD103+ migratory cDC1, following intranasal administration. The fusion vaccine constructs comprised a cDC1-targeting anti-CD103 single chain antibody (aCD103) and a cholera toxin A1 (CTA1) subunit adjuvant, fused with MHC class I and II- or class II-restricted tumor cell antigens to generate a CTA1-I/II-aCD103 vaccine and a CTA1-II-aCD103 vaccine. The immunostimulatory and anti-tumor efficacy of these vaccines was evaluated in murine B16F1-ovalbumin (OVA) melanoma models in C57BL/6 J mice. The CTA1-I/II-aCD103 vaccine was most efficacious and triggered robust tumor antigen-specific CD8+ T cell responses along with a Th17-polarized CD4+ T cell response. This vaccine construct reduced the local growth of implanted B16F1-OVA melanomas and efficiently prevented hematogenous lung metastasis after prophylactic and therapeutic vaccination. Anti-tumor effects of the CTA1-I/II-aCD103 vaccine were antigen-specific and long-lasting. These results imply that adjuvant-containing recombinant fusion vaccines that target and activate cDC1 trigger effective anti-tumor immunity to control tumor growth and metastasis.


Assuntos
Vacinas Anticâncer , Melanoma , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Toxina da Cólera , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Proteínas Recombinantes de Fusão/genética , Vacinas Sintéticas
3.
Oncoimmunology ; 10(1): 1944538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367728

RESUMO

Interleukin-1 beta (IL-1ß), a pro-inflammatory cytokine, has been ascribed a role in the expansion of myeloid progenitors in acute myeloid leukemia (AML) and in promoting myeloid cell-induced suppression of lymphocyte-mediated immunity against malignant cells. This study aimed at defining the potential impact of IL-1ß in the post-remission phase of AML patients receiving immunotherapy for relapse prevention in an international phase IV trial of 84 patients (ClinicalTrials.gov; NCT01347996). Consecutive serum samples were collected from AML patients in first complete remission (CR) who received cycles of relapse-preventive immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2). Low IL-1ß serum levels before and after the first HDC/IL-2 treatment cycle favorably prognosticated leukemia-free survival and overall survival. Serum levels of IL-1ß were significantly reduced in patients receiving HDC/IL-2. HDC also reduced the formation of IL-1ß from activated human PBMCs in vitro. Additionally, high serum levels of the IL-1 receptor antagonist IL-1RA were associated with favorable outcome, and AML patients with low IL-1ß along with high IL-1RA levels were strikingly protected against leukemic relapse. Our results suggest that strategies to target IL-1ß might impact on relapse risk and survival in AML.


Assuntos
Interleucina-2 , Leucemia Mieloide Aguda , Humanos , Imunoterapia , Interleucina-1beta , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva
4.
Oxid Med Cell Longev ; 2020: 7095902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312338

RESUMO

The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.


Assuntos
Carcinogênese , Leucemia , Mutação , NADPH Oxidase 2 , Proteínas de Neoplasias , Espécies Reativas de Oxigênio , Microambiente Tumoral , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , Leucemia/enzimologia , Leucemia/genética , Leucemia/imunologia , Linfócitos do Interstício Tumoral/enzimologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/enzimologia , Células Mieloides/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , NADPH Oxidase 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
5.
Cancer Immunol Immunother ; 68(2): 163-174, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30315349

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature monocytes and granulocytes that impede immune-mediated clearance of malignant cells by multiple mechanisms, including the formation of immunosuppressive reactive oxygen species (ROS) via the myeloid cell NADPH oxidase (NOX2). Histamine dihydrochloride (HDC), a NOX2 inhibitor, exerts anti-cancer efficacy in experimental tumor models but the detailed mechanisms are insufficiently understood. To determine effects of HDC on the MDSC compartment we utilized three murine cancer models known to entail accumulation of MDSC, i.e. EL-4 lymphoma, MC-38 colorectal carcinoma, and 4T1 mammary carcinoma. In vivo treatment with HDC delayed EL-4 and 4T1 tumor growth and reduced the ROS formation by intratumoral MDSCs. HDC treatment of EL-4 bearing mice also reduced the accumulation of intratumoral MDSCs and reduced MDSC-induced suppression of T cells ex vivo. Experiments using GR1-depleted and Nox2 knock out mice supported that the anti-tumor efficacy of HDC required presence of NOX2+ GR1+ cells in vivo. In addition, treatment with HDC enhanced the anti-tumor efficacy of programmed cell death receptor 1 (PD-1) and PD-1 ligand checkpoint blockade in EL-4- and MC-38-bearing mice. Immunomodulatory effects of a HDC-containing regimen on MDSCs were further analyzed in a phase IV trial (Re:Mission Trial, ClinicalTrials.gov; NCT01347996) where patients with acute myeloid leukemia received HDC in conjunction with low-dose IL-2 (HDC/IL-2) for relapse prevention. Peripheral CD14+HLA-DR-/low MDSCs (M-MDSCs) were reduced during cycles of HDC/IL-2 therapy and a pronounced reduction of M-MDSCs during HDC/IL-2 treatment heralded favorable clinical outcome. We propose that anti-tumor properties of HDC may comprise the targeting of MDSCs.


Assuntos
Anticorpos/farmacologia , Histamina/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Adulto , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos Fase IV como Assunto , Intervalo Livre de Doença , Sinergismo Farmacológico , Feminino , Histamina/uso terapêutico , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Resultado do Tratamento
6.
Oncogene ; 38(9): 1534-1543, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30323311

RESUMO

Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-KrasG12D × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-KrasG12D) were treated with Nα-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H2 receptors. M-KrasG12D mice developed myeloid leukemia comprising mature CD11b+Gr1+ myeloid cells that produced NOX2-derived ROS. Treatment of M-KrasG12D mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-KrasG12D mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2-/- × LSL-KrasG12D × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.


Assuntos
Hematopoese/genética , Transtornos Mieloproliferativos/genética , NADPH Oxidase 2/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Análise de Sobrevida
7.
Front Oncol ; 8: 218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967760

RESUMO

In patients with acute myeloid leukemia (AML), treatment with histamine dihydrochloride (HDC) and low-dose IL-2 (HDC/IL-2) in the post-chemotherapy phase has been shown to reduce the incidence of leukemic relapse. The clinical benefit of HDC/IL-2 is pronounced in monocytic forms of AML, where the leukemic cells express histamine type 2 receptors (H2R) and the NAPDH oxidase-2 (NOX2). HDC ligates to H2Rs to inhibit NOX2-derived formation of reactive oxygen species, but details regarding the anti-leukemic actions of HDC remain to be elucidated. Here, we report that human NOX2+ myelomonocytic/monocytic AML cell lines showed increased expression of maturation markers along with reduced leukemic cell proliferation after exposure to HDC in vitro. These effects of HDC were absent in corresponding leukemic cells genetically depleted of NOX2 (NOX2-/-). We also observed that exposure to HDC altered the expression of genes involved in differentiation and cell cycle progression in AML cells and that these effects required the presence of NOX2. HDC promoted the differentiation also of primary monocytic, but not non-monocytic, AML cells in vitro. In a xenograft model, immunodeficient NOG mice were inoculated with wild-type or NOX2-/- human monocytic AML cells and treated with HDC in vivo. The administration of HDC reduced the in vivo expansion of NOX2+/+, but not of NOX2-/- human monocytic AML cells. We propose that NOX2 may be a conceivable target in the treatment of monocytic AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA