RESUMO
Pogona vitticeps has female heterogamety (ZZ/ZW), but the master sex-determining gene is unknown, as it is for all reptiles. We show that nr5a1 (Nuclear Receptor Subfamily 5 Group A Member 1), a gene that is essential in mammalian sex determination, has alleles on the Z and W chromosomes (Z-nr5a1 and W-nr5a1), which are both expressed and can recombine. Three transcript isoforms of Z-nr5a1 were detected in gonads of adult ZZ males, two of which encode a functional protein. However, ZW females produced 16 isoforms, most of which contained premature stop codons. The array of transcripts produced by the W-borne allele (W-nr5a1) is likely to produce truncated polypeptides that contain a structurally normal DNA-binding domain and could act as a competitive inhibitor to the full-length intact protein. We hypothesize that an altered configuration of the W chromosome affects the conformation of the primary transcript generating inhibitory W-borne isoforms that suppress testis determination. Under this hypothesis, the genetic sex determination (GSD) system of P. vitticeps is a W-borne dominant female-determining gene that may be controlled epigenetically.
Assuntos
Alelos , Cromossomos/genética , Splicing de RNA , Processos de Determinação Sexual , Fator Esteroidogênico 1/genética , Sequência de Aminoácidos , Animais , Cromossomos/química , Feminino , Dosagem de Genes , Lagartos , Masculino , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Répteis , Cromossomos Sexuais , Fatores Sexuais , Fator Esteroidogênico 1/química , Relação Estrutura-AtividadeRESUMO
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.
Assuntos
Marsupiais/genética , Telômero/genética , Animais , Hibridização In Situ , Cromossomos Sexuais/genética , Homeostase do Telômero/genéticaRESUMO
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.
Assuntos
Mapeamento Cromossômico , Neoplasias Faciais/veterinária , Genoma , Marsupiais/genética , Doenças dos Animais/genética , Doenças dos Animais/transmissão , Animais , Coloração Cromossômica , Células Clonais , Neoplasias Faciais/genética , Rearranjo Gênico , Cariotipagem , Transplante de Neoplasias , Especificidade da EspécieRESUMO
BACKGROUND: The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative analysis of a tammar wallaby BAC containing the inflammatory region. We also discuss the extent of sequence conservation across the entire region and identify elements conserved in evolution. RESULTS: Fourteen Class III genes from the tammar wallaby inflammatory region were characterised and compared to their orthologues in other vertebrates. The organisation and sequence of genes in the inflammatory region of both the wallaby and South American opossum are highly conserved compared to known genes from eutherian ("placental") mammals. Some minor differences separate the two marsupial species. Eight genes within the inflammatory region have remained tightly clustered for at least 360 million years, predating the divergence of the amphibian lineage. Analysis of sequence conservation identified 354 elements that are conserved. These range in size from 7 to 431 bases and cover 15.6% of the inflammatory region, representing approximately a 4-fold increase compared to the average for vertebrate genomes. About 5.5% of this conserved sequence is marsupial-specific, including three cases of marsupial-specific repeats. Highly Conserved Elements were also characterised. CONCLUSION: Using comparative analysis, we show that a cluster of MHC genes involved in inflammation, including TNF, LTA (or its putative teleost homolog TNF-N), APOM, and BAT3 have remained together for over 450 million years, predating the divergence of mammals from fish. The observed enrichment in conserved sequences within the inflammatory region suggests conservation at the transcriptional regulatory level, in addition to the functional level.
Assuntos
Evolução Molecular , Macropodidae/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Anuros/genética , Mapeamento Cromossômico/métodos , Sequência Conservada/genética , Bases de Dados Genéticas , Peixes/genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Gambás/genética , Filogenia , Análise de Sequência de DNA , Peixe-Zebra/genéticaRESUMO
Genomic imprinting, representing parent-specific expression of alleles at a locus, raises many questions about how--and especially why--epigenetic silencing of mammalian genes evolved. We present the first in-depth study of how a human imprinted domain evolved, analyzing a domain containing several imprinted genes that are involved in human disease. Using comparisons of orthologous genes in humans, marsupials, and the platypus, we discovered that the Prader-Willi/Angelman syndrome region on human Chromosome 15q was assembled only recently (105-180 million years ago). This imprinted domain arose after a region bearing UBE3A (Angelman syndrome) fused with an unlinked region bearing SNRPN (Prader-Willi syndrome), which had duplicated from the non-imprinted SNRPB/B'. This region independently acquired several retroposed gene copies and arrays of small nucleolar RNAs from different parts of the genome. In their original configurations, SNRPN and UBE3A are expressed from both alleles, implying that acquisition of imprinting occurred after their rearrangement and required the evolution of a control locus. Thus, the evolution of imprinting in viviparous mammals is ongoing.
Assuntos
Impressão Genômica/genética , Marsupiais/genética , Ornitorrinco/genética , Alelos , Animais , Autoantígenos/genética , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Genoma Humano/genética , Humanos , Hibridização in Situ Fluorescente , Camundongos , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de DNA , Homologia de Sequência , Ubiquitina-Proteína Ligases/genética , Proteínas Centrais de snRNPRESUMO
The ATRX protein, associated with X-linked alpha-thalassaemia, mental retardation and developmental abnormalities including genital dysgenesis, has been proposed to function as a global transcriptional regulator within a multi-protein complex. However, an understanding of the composition and mechanics of this machinery has remained elusive. We applied inter-specific comparative analysis to identify conserved elements which may be involved in regulating the conformation of chromatin. As part of this study, we cloned and sequenced the entire translatable coding region (7.4 kb) of the ATRX gene from a model marsupial (tammar wallaby, Macropus eugenii). We identify an ATRX ancestral core, conserved between plants, fish and mammals, comprising the cysteine-rich and SWI2/SNF2 helicase-like regions and protein interaction domains. Our data are consistent with the model of the cysteine-rich region as a DNA-binding zinc finger adjacent to a protein-binding (plant homeodomain-like) domain. Alignment of vertebrate ATRX sequences highlights other conserved elements, including a negatively charged mammalian sequence which we propose to be involved in binding of positively charged histone tails.
Assuntos
Macropodidae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Peixes/genética , Macropodidae/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ratos , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tetraodontiformes/genética , Fatores de Transcrição/metabolismoRESUMO
Comparative genomic sequence analysis is a powerful technique for identifying regulatory regions in genomic DNA. However, its utility largely depends on the evolutionary distances between the species involved. Here we describe the screening of a genomic BAC library from the stripe-faced dunnart, Sminthopsis macroura, formerly known as the narrow-footed marsupial mouse. We isolated a clone containing the LYL1 locus, completely sequenced the 60.6-kb insert, and compared it with orthologous human and mouse sequences. Noncoding homology was substantially reduced in the human/dunnart analysis compared with human/mouse, yet we could readily identify all promoters and exons. Human/mouse/dunnart alignments of the LYL1 candidate promoter allowed us to identify putative transcription factor binding sites, revealing a pattern highly reminiscent of critical regulatory regions of the LYL1 paralogue, SCL. This newly identified LYL1 promoter showed strong activity in myeloid progenitor cells and was bound in vivo by Fli1, Elf1, and Gata2-transcription factors all previously shown to bind to the SCL stem cell enhancer. This study represents the first large-scale comparative analysis involving marsupial genomic sequence and demonstrates that such comparisons provide a powerful approach to characterizing mammalian regulatory elements.