Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Parkinsonism Relat Disord ; 79: 100-104, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911246

RESUMO

ADAR1 variants are associated to rare and heterogenous neurological conditions, including Aicardi-Goutières syndrome type 6, bilateral striatal necrosis, and dyschromatosis symmetrica hereditaria. Movement disorders (MDs) commonly occur in ADAR1-related diseases although a complete overview on the phenomenology has not been provided yet. Here, a cohort of 57 patients with ADAR1-related diseases, including 3 unpublished patients and 54 previously reported cases, was reviewed. Data on demographics, clinical features of MDs, genetics and biomarkers were collected and descriptive statistics, group analysis for genotype and logistic regression were run. Manifestations of MD characterized the onset of ADAR1-related disease in 60% of patients. Specifically, dystonia occurred in 39% of cases, even as severe status dystonicus, while prevalence of other MDs was lower. Patients often presented brain lesions (>90%) and progressive disease course (43%), fatal in some cases. Clinical presentation and outcome differed among patients with distinct genotype. This review shows that phenomenology of MDs in ADAR1-related diseases is wide and heterogeneous, although a severe motor syndrome (often characterized by dystonia) secondary to brain lesions represents the most common manifestation. Waiting for future development of disease-modifying treatments, an appropriate symptomatic intervention is crucial for ADAR1 patients. Accordingly, a deeper knowledge of phenomenology is fundamental.


Assuntos
Adenosina Desaminase/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Proteínas de Ligação a RNA/genética , Humanos
2.
Cerebellum ; 17(4): 489-493, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29397530

RESUMO

ATP1A3 mutations are related to a wide spectrum of clinical conditions, including several defined syndromes as rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), together with many other intermediate phenotypes. Ataxia is always more increasingly reported, either as accessory or prominent sign, in ATP1A3-related conditions, being thus considered as a peculiar feature of this spectrum. Here, we report three cases of childhood rapid-onset ataxia due to two different ATP1A3 variants. Interestingly, two patients (mother and son) showed a variant c.2266C>T (p.R756C), while the third carried the c.2452G>A (p.E818K) variant, commonly described in association with CAPOS syndrome. Our report contributes to extent the phenotypic spectrum of ATP1A3 mutations, remarking childhood rapid-onset ataxia as an additional clinical presentation of ATP1A3-related conditions. Finally, we discussed this phenomenology in the light of translational evidence from a RDP animal model.


Assuntos
Ataxia/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Idade de Início , Ataxia/epidemiologia , Ataxia/fisiopatologia , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
3.
Brain Dev ; 40(5): 433-438, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29395663

RESUMO

BACKGROUND: Alternating Hemiplegia of Childhood (AHC) is a rare neurological disease caused by mutations in ATP1A3 gene codifying for alpha3 subunit of Na+-K+ ATPase pump. Repeated and transient attacks of hemiplegia, usually affecting one side of the body or the other, or both sides of the body at once, are the core features of AHC. Monocular nystagmus, other abnormalities in ocular movements, dystonic posturing and epilepsy are commonly associated to AHC. However, the spectrum of ATP1A3 related diseases is still expanding and new phenotypes have been reported. CASE REPORT: Here, we described a patient who developed a severe early onset drug-resistant epileptic encephalopathy and months later, he presented episodes of hemiplegic attacks and monocular nystagmus. Thus, AHC was hypothesized and a novel mutation in ATP1A3 gene was found. Interestingly, ketogenic diet (KD) was started and both epileptic seizures and classical AHC paroxysmal episodes stopped. Long-term follow-up shows a global improvement of neurological development. CONCLUSIONS: Our case reinforces the role of KD as a novel therapeutic option for ATP1A3-related conditions. However, proper dedicated confirmatory trials on KD are necessary.


Assuntos
Dieta Cetogênica/métodos , Hemiplegia/dietoterapia , Espasmos Infantis/dietoterapia , Pré-Escolar , Epilepsia Generalizada/dietoterapia , Hemiplegia/genética , Humanos , Lactente , Masculino , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Espasmos Infantis/genética
4.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389897

RESUMO

Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.


Assuntos
Proteínas de Ciclo Celular/genética , Sistema Nervoso Central/metabolismo , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Animais , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Histona Desacetilases/genética , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas/genética , Proteínas Repressoras/genética , Coesinas
5.
Pediatr Neurol ; 68: 59-63, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28162859

RESUMO

BACKGROUND: Subependymal giant cell astrocytomas (SEGAs) are low-grade tumors affecting up to 20% of patients with tuberous sclerosis complex (TSC). Early neurosurgical resection has been the only standard treatment until few years ago when a better understanding of the molecular pathogenesis of TSC led to the use of mammalian target of rapamycin (mTOR) inhibitors. Surgical resection of SEGAs is still considered as the first line treatment in individuals with symptomatic hydrocephalus and intratumoral hemorrhage. We describe four patients with symptomatic or asymptomatic hydrocephalus who were successfully treated with the mTOR inhibitor everolimus. METHODS: We collected the clinical data of four consecutive patients presenting with symptomatic or asymptomatic hydrocephalus due to a growth of subependymal giant cell atrocytomas and who could not undergo surgery for different reasons. RESULTS: All patients experienced a clinically significant response to everolimus and an early shrinkage of the SEGA with improvement in ventricular dilatation. Everolimus was well tolerated by all individuals. CONCLUSIONS: Our clinical series demonstrate a possible expanding indication for mTOR inhibition in TSC, which can be considered in patients with asymptomatic hydrocephalus or even when the symptoms already appeared. It offers a significant therapeutic alternative to individuals that once would have undergone immediate surgery. Everolimus might also allow postponement of a neurosurgical resection, making it elective with an overall lower risk.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Everolimo/uso terapêutico , Glioma Subependimal/tratamento farmacológico , Hidrocefalia/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/fisiopatologia , Feminino , Glioma Subependimal/complicações , Glioma Subependimal/fisiopatologia , Humanos , Hidrocefalia/etiologia , Hidrocefalia/fisiopatologia , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral , Adulto Jovem
6.
Epilepsy Behav Case Rep ; 5: 13-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330989

RESUMO

Tuberous sclerosis is associated with epilepsy in up to 85% of cases, and in 2/3, the onset is within the first year of life. An early antiepileptic treatment is crucial to minimize the consequences of epilepsy on cognition and behavior. We present a case report of a child with tuberous sclerosis who presented with infantile spasms at the age of 6 months, immediately treated with vigabatrin. Because of the presence of a subependymal giant cell astrocytoma, he also received everolimus since 18 months of age. We might wonder if an earlier treatment could have produced a better outcome; in fact, despite a targeted combined treatment, he continues to suffer from sporadic focal motor seizures, and at the age of 40 months, he presents severe developmental delay with autism-like behavior.

7.
Proc Natl Acad Sci U S A ; 113(5): E548-57, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26764381

RESUMO

Aberrant embryonic development of the hypothalamus and/or pituitary gland in humans results in congenital hypopituitarism (CH). Transcription factor 7-like 1 (TCF7L1), an important regulator of the WNT/ß-catenin signaling pathway, is expressed in the developing forebrain and pituitary gland, but its role during hypothalamo-pituitary (HP) axis formation or involvement in human CH remains elusive. Using a conditional genetic approach in the mouse, we first demonstrate that TCF7L1 is required in the prospective hypothalamus to maintain normal expression of the hypothalamic signals involved in the induction and subsequent expansion of Rathke's pouch progenitors. Next, we reveal that the function of TCF7L1 during HP axis development depends exclusively on the repressing activity of TCF7L1 and does not require its interaction with ß-catenin. Finally, we report the identification of two independent missense variants in human TCF7L1, p.R92P and p.R400Q, in a cohort of patients with forebrain and/or pituitary defects. We demonstrate that these variants exhibit reduced repressing activity in vitro and in vivo relative to wild-type TCF7L1. Together, our data provide support for a conserved molecular function of TCF7L1 as a transcriptional repressor during HP axis development in mammals and identify variants in this transcription factor that are likely to contribute to the etiology of CH.


Assuntos
Sistema Hipotálamo-Hipofisário , Proteína 1 Semelhante ao Fator 7 de Transcrição/fisiologia , Animais , Estudos de Coortes , Humanos , Camundongos , Hipófise/anormalidades , Hipófise/metabolismo , Hipófise/fisiopatologia , Prosencéfalo/anormalidades , Prosencéfalo/metabolismo
8.
Pituitary ; 19(1): 50-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26350256

RESUMO

PURPOSE: Adamantinomatous craniopharyngiomas (aCPs) are complex epithelial neoplasms that arise from the progenitors of the pituitary gland. Although benign, these tumours can be locally aggressive invading vital neighbouring structures such as the hypothalamus, the cranial and optic nerves. Congenital forms of aCPs diagnosed during foetal development are very rare. The purpose of this article is to present with a histopathological and molecular characterisation of congenital craniopharyngioma. METHODS: Here we report a case of in utero diagnosed aCP, detected at 21 weeks of gestation by ultrasound, visualised by MRI at 22 weeks and histologically diagnosed at 23 weeks. We provide with histopathological characterisation of rare form of congenital aCPs. RESULTS: Detailed examination of the tumour reveals the classical histological hallmarks of aCPs with the presence of stellate reticulum, palisading epithelium, wet keratin and calcification deposits. The tumour demonstrated complete absence of all pituitary hormones and the absence of the neuroendocrine marker, synaptophysin. Immunohistochemistry against ß-catenin revealed occasional cells with nuclear-ß-catenin localisation and the presence of pituitary progenitors positive for SOX9 and SOX2. Targeted Sanger sequencing revealed no genetic variants in oncogenes CTNNB1 and BRAF, previously associated with CP. CONCLUSIONS: In this article, we provide with in-depth molecular and histological characterisation of in utero aCP due to an unknown driving mutation that could represent a sub-cohort of congenital aCPs.


Assuntos
Craniofaringioma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Hipófise/patologia , Neoplasias Hipofisárias/diagnóstico , Gravidez
9.
J Cell Physiol ; 231(3): 613-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26206533

RESUMO

Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ciclina D1/metabolismo , Síndrome de Cornélia de Lange/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Regulação para Baixo , Humanos , Camundongos , Mutação/genética , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Semin Pediatr Neurol ; 22(4): 259-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706013

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of widespread hamartomatous lesions in various organs, including brain, skin, kidneys, heart, and eyes. Central nervous system is almost invariably involved, with up to 85% of patients presenting with epilepsy, and at least half of patients having intellectual disability or other neuropsychiatric disorders including autism spectrum disorder. TSC is caused by the mutation in one of the 2 genes TSC1, at 9q34, and TSC2, at 16p13.3. They respectively encode for hamartin and tuberin, which form an intracellular complex inhibiting the mammalian target of rapamycin. Mammalian target of rapamycin overactivation following the genetic defect determines the cell growth and proliferation responsible for TSC-related lesions, as well as the alterations in neuronal excitability and synaptogenesis leading to epilepsy and neuropsychiatric disorders. A causative mutation for the disorder is identified in about 85% of patients with a clinical diagnosis of TSC. Mosaicism and technology limits likely explain most of the no mutation identified cases. This review confirms that patients with TSC2 mutations considered as a group usually present a more severe phenotype, characterized by higher number of tubers, earlier age at seizure onset and higher prevalence of intellectual disability. However, the clinical phenotype of the disease presents a high variability, thus making the prediction of the phenotype on an individual basis still challenging. The increasing application of new molecular techniques to subjects with TSC has the potential to significantly reduce the rate of patients with no mutation demonstrated and to identify an increasing higher number of mutations. This would hopefully allow a better characterization of higher risk mutations, which might help clinicians to plan individualized surveillance plans. Furthermore, the increasing availability of disease registries to collect clinical and genetics data of patients help to define more valid and clinically oriented genotype or phenotype correlations.


Assuntos
Fenótipo , Esclerose Tuberosa/genética , Esclerose Tuberosa/fisiopatologia , Humanos , Mosaicismo , Esclerose Tuberosa/patologia
11.
Semin Pediatr Neurol ; 22(4): 282-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706015

RESUMO

Tuberous sclerosis complex (TSC) is a multisystem disease associated with an overall reduction in life expectancy due to the possible occurrence of different life-threatening conditions. Subjects affected by TSC are, in fact, at risk of hydrocephalus secondary to the growth of subependymal giant cell astrocytomas, or of sudden unexpected death in epilepsy. Other nonneurological life-threatening conditions include abdominal bleeding owing to renal angiomyolipomas rupture, renal insufficiency due to progressive parenchymal destruction by multiple cysts, pulmonary complications due to lymphangioleiomyomatosis, and cardiac failure or arrhythmias secondary to rhabdomyomas. In the last decades, there has been a great progress in understanding the pathophysiology of TSC-related manifestations, which are mainly linked to the hyperactivation of the so-called mammalian target of rapamycin (mTOR) pathway, as a consequence of the mutation in 1 of the 2 genes TSC1 or TSC2. This led to the development of new treatment strategies for this disease. In fact, it is now available as a biologically targeted therapy with everolimus, a selective mTOR inhibitor, which has been licensed in Europe and USA for the treatment of subependymal giant cell astrocytomas and angiomyolipomas in subjects with TSC. This drug also proved to benefit other TSC-related manifestations, including pulmonary lymphangioleiomyomatosis, cardiac rhabdomyomas, and presumably epileptic seizures. mTOR inhibitors are thus proving to be a systemic therapy able to simultaneously address different and potentially life-threatening complications, giving the hope of improving life expectation in individuals with TSC.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Esclerose Tuberosa/tratamento farmacológico , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/enzimologia , Esclerose Tuberosa/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA