Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 16(18): 3276-3294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842901

RESUMO

Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age-related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.


Assuntos
DNA Mitocondrial , Neoplasias , Envelhecimento/genética , Envelhecimento/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Mutação/genética , Neoplasias/patologia
2.
Sci Rep ; 12(1): 6660, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459777

RESUMO

Advances in multiplex immunofluorescence (mIF) and digital image analysis has enabled simultaneous assessment of protein defects in electron transport chain components. However, current manual methodology is time consuming and labour intensive. Therefore, we developed an automated high-throughput mIF workflow for quantitative single-cell level assessment of formalin fixed paraffin embedded tissue (FFPE), leveraging tyramide signal amplification on a Ventana Ultra platform coupled with automated multispectral imaging on a Vectra 3 platform. Utilising this protocol, we assessed the mitochondrial oxidative phosphorylation (OXPHOS) protein alterations in a cohort of benign and malignant prostate samples. Mitochondrial OXPHOS plays a critical role in cell metabolism, and OXPHOS perturbation is implicated in carcinogenesis. Marked inter-patient, intra-patient and spatial cellular heterogeneity in OXPHOS protein abundance was observed. We noted frequent Complex IV loss in benign prostate tissue and Complex I loss in age matched prostate cancer tissues. Malignant regions within prostate cancer samples more frequently contained cells with low Complex I & IV and high mitochondrial mass in comparison to benign-adjacent regions. This methodology can now be applied more widely to study the frequency and distribution of OXPHOS alterations in formalin-fixed tissues, and their impact on long-term clinical outcomes.


Assuntos
Imunofluorescência , Próstata , Neoplasias da Próstata , Complexo IV da Cadeia de Transporte de Elétrons , Imunofluorescência/métodos , Formaldeído , Humanos , Masculino , Fosforilação Oxidativa , Inclusão em Parafina , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Fixação de Tecidos
3.
Exp Gerontol ; 149: 111340, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838218

RESUMO

OBJECTIVE: To assess the effect of age on mechanisms of exercise tolerance. METHODS: Prospective observational study recruited 71 healthy individuals divided into two groups according to their age i.e. younger (≤40 years of age, N = 43); and older (≥55 years of age, N = 28). All participants underwent maximal graded cardiopulmonary exercise stress testing using cycle ergometer with simultaneous non-invasive gas-exchange and central haemodynamic measurements. Using the Fick equation, arteriovenous O2 difference was calculated as the ratio between measured O2 consumption and cardiac output. RESULTS: The mean age of younger and older participants was 26.0 ± 5.7 years, and 65.1 ± 6.6 years respectively. Peak O2 consumption was significantly lower in older compared to the younger age group (18.8 ± 5.2 vs 34.4 ± 9.8 mL/kg/min, p < 0.01). Peak exercise cardiac output and cardiac index were not significantly different between the younger and older age groups (22.7 ± 5.0 vs 22.1 ± 3.9 L/min, p = 0.59; and 12.4 ± 2.9 vs 11.8 ± 1.9 L/min/m2, p = 0.29). Despite demonstrating significantly lower peak heart rate by 33 beats/min (129 ± 18.3 vs 162 ± 19.9, p < 0.01), older participants demonstrated significantly higher stroke volume and stroke volume index compared to the younger age group (173 ± 41.5 vs 142 ± 34.9 mL/min, p < 0.01; and 92.1 ± 18.1 vs 78.3 ± 19.5 mL/m2, p < 0.01). Arteriovenous O2 difference was significantly lower in older compared to younger age group participants (9.01 ± 3.0 vs 15.8 ± 4.3 mlO2/100 mL blood, p < 0.01). CONCLUSION: Ability of skeletal muscles to extract delivered oxygen represented by reduced arteriovenous O2 difference at peak exercise appears to be the key determinant of exercise tolerance in healthy older individuals.


Assuntos
Tolerância ao Exercício , Oxigênio , Idoso , Débito Cardíaco , Teste de Esforço , Humanos , Consumo de Oxigênio
5.
Nat Cancer ; 1(10): 976-989, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33073241

RESUMO

Oxidative phosphorylation (OXPHOS) defects caused by somatic mitochondrial DNA (mtDNA) mutations increase with age in human colorectal epithelium and are prevalent in colorectal tumours, but whether they actively contribute to tumorigenesis remains unknown. Here we demonstrate that mtDNA mutations causing OXPHOS defects are enriched during the human adenoma/carcinoma sequence, suggesting they may confer a metabolic advantage. To test this we deleted the tumour suppressor Apc in OXPHOS deficient intestinal stem cells in mice. The resulting tumours were larger than in control mice due to accelerated cell proliferation and reduced apoptosis. We show that both normal crypts and tumours undergo metabolic remodelling in response to OXPHOS deficiency by upregulating the de novo serine synthesis pathway (SSP). Moreover, normal human colonic crypts upregulate the SSP in response to OXPHOS deficiency prior to tumorigenesis. Our data show that age-associated OXPHOS deficiency causes metabolic remodelling that can functionally contribute to accelerated intestinal cancer development.


Assuntos
Neoplasias Intestinais , Doenças Mitocondriais , Animais , Transformação Celular Neoplásica/genética , DNA Mitocondrial/genética , Neoplasias Intestinais/genética , Camundongos , Mitocôndrias/genética , Mutação
6.
Open Biol ; 10(5): 200061, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32428418

RESUMO

How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação , Animais , Humanos , Mitose , Modelos Teóricos
7.
Biogerontology ; 21(4): 445-459, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31802313

RESUMO

Alterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.


Assuntos
Envelhecimento , Mitocôndrias , Neoplasias , Envelhecimento/patologia , Senescência Celular , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Neoplasias/patologia
8.
Hepatology ; 70(4): 1377-1391, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30963615

RESUMO

Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFß1) and platelet-derived growth factor (PDGFßß) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFß1/PDGFßß stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFß1/PDGFßß-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.


Assuntos
Reatores Biológicos , Regulação da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Técnicas de Cultura de Tecidos/métodos , Animais , Biópsia por Agulha , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Fatores de Tempo
9.
J Pathol ; 246(4): 427-432, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30146801

RESUMO

Inherited mitochondrial DNA (mtDNA) mutations cause mitochondrial disease, but mtDNA mutations also occur somatically and accumulate during ageing. Studies have shown that the mutation load of some inherited mtDNA mutations decreases over time in blood, suggesting selection against the mutation. However, it is unknown whether such selection occurs in other mitotic tissues, and where it occurs within the tissue. Gastrointestinal epithelium is a canonical mitotic tissue rapidly renewed by stem cells. Intestinal crypts (epithelium) undergo monoclonal conversion with a single stem cell taking over the niche and producing progeny. We show: (1) that there is a significantly lower mtDNA mutation load in the mitotic epithelium of the gastrointestinal tract when compared to the smooth muscle in the same tissue in patients with the pathogenic m.3243A>G and m.8344A>G mutations; (2) that there is considerable variation seen in individual crypts, suggesting changes in the stem cell population; (3) that this lower mutation load is reflected in the absence of a defect in oxidative phosphorylation in the epithelium. This suggests that there is selection against inherited mtDNA mutations in the gastrointestinal stem cells that is in marked contrast to the somatic mtDNA mutations that accumulate with age in epithelial stem cells leading to a biochemical defect. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
DNA Mitocondrial/genética , Células Epiteliais/química , Mucosa Gástrica/química , Mucosa Intestinal/química , Mitocôndrias/genética , Miopatias Mitocondriais/genética , Mutação , Células-Tronco/química , Adulto , Estudos de Casos e Controles , Senescência Celular/genética , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/patologia , Predisposição Genética para Doença , Hereditariedade , Humanos , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Mitocôndrias/patologia , Miopatias Mitocondriais/patologia , Mitose , Miócitos de Músculo Liso/química , Miócitos de Músculo Liso/patologia , Fosforilação Oxidativa , Linhagem , Fenótipo , RNA de Transferência de Leucina/genética , RNA de Transferência de Lisina/genética , Seleção Genética , Células-Tronco/patologia
10.
EBioMedicine ; 31: 166-173, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29748033

RESUMO

Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.


Assuntos
Envelhecimento/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Fosforilação Oxidativa , Células-Tronco/patologia
11.
J Pathol ; 245(3): 311-323, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660116

RESUMO

Defects in the respiratory chain, interfering with energy production in the cell, are major underlying causes of mitochondrial diseases. In spite of this, the surprising variety of clinical symptoms, disparity between ages of onset, as well as the involvement of mitochondrial impairment in ageing and age-related diseases continue to challenge our understanding of the pathogenic processes. This complexity can be in part attributed to the unique metabolic needs of organs or of various cell types. In this view, it remains essential to investigate mitochondrial dysfunction at the cellular level. For this purpose, we developed a novel enzyme histochemical method that enables precise quantification in fresh-frozen tissues using competing redox reactions which ultimately lead to the reduction of tetrazolium salts and formazan deposition in cytochrome c oxidase-deficient mitochondria. We demonstrate that the loss of oxidative activity is detected at very low levels - this achievement is unequalled by previous techniques and opens up new opportunities for the study of early disease processes or comparative investigations. Moreover, human biopsy samples of mitochondrial disease patients of diverse genotypic origins were used and the successful detection of COX-deficient cells suggests a broad application for this new method. Lastly, the assay can be adapted to a wide range of tissues in the mouse and extends to other animal models, which we show here with the fruit fly, Drosophila melanogaster. Overall, the new assay provides the means to quantify and map, on a cell-by-cell basis, the full extent of COX deficiency in tissues, thereby expending new possibilities for future investigation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Deficiência de Citocromo-c Oxidase/diagnóstico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Animais , Deficiência de Citocromo-c Oxidase/enzimologia , Deficiência de Citocromo-c Oxidase/genética , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Metabolismo Energético , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metilfenazônio Metossulfato/química , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Nitroazul de Tetrazólio/química , Oxirredução , Valor Preditivo dos Testes , RNA de Transferência de Alanina/genética
12.
Cell Rep ; 20(7): 1609-1622, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813673

RESUMO

Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1) enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.


Assuntos
DNA Mitocondrial/genética , Células Epiteliais/citologia , Células-Tronco Multipotentes/citologia , Próstata/citologia , Esferoides Celulares/citologia , Nicho de Células-Tronco/genética , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Linhagem da Célula/genética , DNA Mitocondrial/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microdissecção e Captura a Laser , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Multipotentes/metabolismo , Cultura Primária de Células , Próstata/metabolismo , Próstata/cirurgia , RNA/genética , RNA/metabolismo , Esferoides Celulares/metabolismo
13.
EMBO J ; 35(7): 724-42, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848154

RESUMO

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1ß-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1ß deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Fenótipo
14.
Cell Stem Cell ; 16(1): 33-8, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25465116

RESUMO

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this methodical breakthrough speculated that SCNT would allow the creation of patient-matched embryonic stem cells, even in patients with hereditary mitochondrial diseases. However, herein we show that mismatched mitochondria in nuclear-transfer-derived embryonic stem cells (NT-ESCs) possess alloantigenicity and are subject to immune rejection. In a murine transplantation setup, we demonstrate that allogeneic mitochondria in NT-ESCs, which are nucleus-identical to the recipient, may trigger an adaptive alloimmune response that impairs the survival of NT-ESC grafts. The immune response is adaptive, directed against mitochondrial content, and amenable for tolerance induction. Mitochondrial alloantigenicity should therefore be considered when developing therapeutic SCNT-based strategies.


Assuntos
Células-Tronco Embrionárias/citologia , Imunidade , Mitocôndrias/metabolismo , Técnicas de Transferência Nuclear , Animais , Antígenos/imunologia , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Transplante Homólogo
15.
J Exp Med ; 211(13): 2617-33, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25452464

RESUMO

The Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)-driven modulation of resistance to oxidative stress in the satellite cell population. These results lay the basis for developing Bmi1 pharmacological activators, which either alone or in combination with MT1 agonists could be a powerful novel therapeutic approach to improve regeneration in muscle wasting conditions.


Assuntos
Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Metalotioneína/metabolismo , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Regeneração , Animais , Diferenciação Celular , Doença Crônica , Dano ao DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Degeneração Macular/genética , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Desenvolvimento Muscular , Força Muscular , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Fator de Transcrição PAX7/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Células Satélites de Músculo Esquelético/patologia , Biologia de Sistemas
16.
Hum Mol Genet ; 23(4): 949-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24092330

RESUMO

Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.


Assuntos
RNA Ribossômico/genética , RNA/genética , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA Ribossômico/química
17.
J Pathol ; 226(2): 274-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21989606

RESUMO

Mitochondrial DNA (mtDNA) defects are a relatively common cause of inherited disease and have been implicated in both ageing and cancer. MtDNA encodes essential subunits of the mitochondrial respiratory chain and defects result in impaired oxidative phosphorylation (OXPHOS). Similar OXPHOS defects have been shown to be present in a number of neurodegenerative conditions, including Parkinson's disease, as well as in normal ageing human tissues. Additionally, a number of tumours have been shown to contain mtDNA mutations and an altered metabolic phenotype. In this review we outline the unique characteristics of mitochondrial genetics before detailing important pathological features of mtDNA diseases, focusing on adult neurological disease as well as the role of mtDNA mutations in neurodegenerative diseases, ageing and cancer.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Fosforilação Oxidativa , Envelhecimento/genética , Deleção de Genes , Humanos , Estresse Oxidativo/genética , Fenótipo , Mutação Puntual/genética
18.
J Pathol ; 225(2): 181-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21898876

RESUMO

Stem cells accumulate mitochondrial DNA (mtDNA) mutations resulting in an observable respiratory chain defect in their progeny, allowing the mapping of stem cell fate. There is considerable uncertainty in prostate epithelial biology where both basal and luminal stem cells have been described, and in this study the clonal relationships within the human prostate epithelial cell layers were explored by tracing stem cell fate. Fresh-frozen and formalin-fixed histologically-benign prostate samples from 35 patients were studied using sequential cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) enzyme histochemistry and COX subunit I immunofluorescence to identify areas of respiratory chain deficiency; mtDNA mutations were identified by whole mitochondrial genome sequencing of laser-captured areas. We demonstrated that cells with respiratory chain defects due to somatic mtDNA point mutations were present in prostate epithelia and clonally expand in acini. Lineage tracing revealed distinct patterning of stem cell fate with mtDNA mutations spreading throughout the whole acinus or, more commonly, present as mosaic acinar defects. This suggests that individual acini are typically generated from multiple stem cells, and the presence of whole COX-deficient acini suggests that a single stem cell can also generate an entire branching acinar subunit of the gland. Significantly, a common clonal origin for basal, luminal and neuroendocrine cells is demonstrated, helping to resolve a key area of debate in human prostate stem cell biology.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Próstata/citologia , Células-Tronco/citologia , Células Clonais , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Microdissecção
19.
Stem Cells ; 27(6): 1410-20, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19489031

RESUMO

Methods for lineage tracing of stem cell progeny in human tissues are currently not available. We describe a technique for detecting the expansion of a single cell's progeny that contain clonal mitochondrial DNA (mtDNA) mutations affecting the expression of mtDNA-encoded cytochrome c oxidase (COX). Because such mutations take up to 40 years to become phenotypically apparent, we believe these clonal patches originate in stem cells. Dual-color enzyme histochemistry was used to identify COX-deficient cells, and mutations were confirmed by microdissection of single cells with polymerase chain reaction sequencing of the entire mtDNA genome. These techniques have been applied to human intestine, liver, pancreas, and skin. Our results suggest that the stem cell niche is located at the base of colonic crypts and above the Paneth cell region in the small intestine, in accord with dynamic cell kinetic studies in animals. In the pancreas, exocrine tissue progenitors appeared to be located in or close to interlobular ducts, and, in the liver, we propose that stem cells are located in the periportal region. In the skin, the origin of a basal cell carcinoma appeared to be from the outer root sheath of the hair follicle. We propose that this is a general method for detecting clonal cell populations from which the location of the niche can be inferred, also affording the generation of cell fate maps, all in human tissues. In addition, the technique allows analysis of the origin of human tumors from specific tissue sites.


Assuntos
Linhagem da Célula , DNA Mitocondrial/genética , Células Epiteliais/citologia , Células Clonais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Imuno-Histoquímica , Mutação , Nicho de Células-Tronco/citologia
20.
Biochim Biophys Acta ; 1790(10): 1015-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19409965

RESUMO

The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Mutação , Animais , Deleção de Genes , Humanos , Camundongos , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA