Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36949957

RESUMO

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

2.
Cell Rep ; 36(5): 109487, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348140

RESUMO

Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. ß-hydroxybutyrate (ß-OHB) is utilized in lysine ß-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke ß-OHB. Mass spectrometry analysis of the ß-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Proteômica , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , NAD/metabolismo
3.
Nat Commun ; 8: 14680, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262700

RESUMO

Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to redundant functions of individual cytokines. Searching for better cardiac inflammation targets, here we link T cells with HF development in a mouse model of pathological cardiac hypertrophy and in human HF patients. T cell costimulation blockade, through FDA-approved rheumatoid arthritis drug abatacept, leads to highly significant delay in progression and decreased severity of cardiac dysfunction in the mouse HF model. The therapeutic effect occurs via inhibition of activation and cardiac infiltration of T cells and macrophages, leading to reduced cardiomyocyte death. Abatacept treatment also induces production of anti-inflammatory cytokine interleukin-10 (IL-10). IL-10-deficient mice are refractive to treatment, while protection could be rescued by transfer of IL-10-sufficient B cells. These results suggest that T cell costimulation blockade might be therapeutically exploited to treat HF.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Macrófagos/metabolismo , Linfócitos T/metabolismo , Abatacepte/farmacologia , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Humanos , Imunossupressores/farmacologia , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão , Linfócitos T/efeitos dos fármacos
4.
Nat Commun ; 7: 12418, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27489048

RESUMO

Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease.


Assuntos
5-Metilcitosina/análogos & derivados , Cardiomegalia/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Elementos Facilitadores Genéticos/genética , Técnicas de Silenciamento de Genes , Genoma , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Transcrição Gênica
5.
Cardiovasc Res ; 95(3): 366-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22721990

RESUMO

AIMS: The discovery of a specific prorenin receptor (PRR) suggests a biological function of prorenin that is independent of angiotensin I production. In the present study, we investigated the role of PRR on smooth muscle cell (SMC) migration. METHODS AND RESULTS: PRR was expressed in human mammary arteries and in cultured human aortic SMCs. Prorenin induced SMC migration in a dose-dependent manner, as assessed by Boyden chamber chemotaxis assay, and increased SMC random motility, as determined by video microscopy. The prorenin decoy peptide inhibited SMC migration in response to prorenin, and knockdown of PRR by small interfering RNA completely inhibited the migratory response to prorenin, demonstrating that the chemotactic action of prorenin is mediated by the PRR. Prorenin induced cytoskeleton reorganization and lamellipodia formation and increased the intracellular levels of both RhoA-GTP and Rac1-GTP through PRR. These effects were required for SMC migration, because the suppression by small interfering RNA of either Rac1 or RhoA GTP-bound forms completely blocked the PRR-mediated chemotactic effect. Prorenin also induced the formation of larger focal adhesions and cleavage of the focal adhesion kinase (pp125(FAK)) into two main fragments with molecular weights of 50 and 90 kDa. The generation of these two fragments of pp125(FAK) was reduced by the calpain inhibitor ALLN, which also inhibited SMC migration in response to prorenin. CONCLUSIONS: These results demonstrate that prorenin is a chemotactic factor for human aortic SMCs expressing PRR. This effect is elicited through reorganization of the cytoskeleton and focal adhesion, activation of RhoA and Rac1, and calpain-mediated cleavage of pp125(FAK).


Assuntos
Quimiotaxia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Aorta/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Humanos , Microscopia de Vídeo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Interferência de RNA , Receptores de Superfície Celular/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA