Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Vet Scand ; 65(1): 46, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858113

RESUMO

BACKGROUND: Meningoencephalitis of unknown origin is a common cause of severe neurological disease in dogs. The term covers a heterogeneous group of noninfectious inflammatory diseases, with immune dysregulation widely accepted as the underlying disease mechanism. Current treatment consists of immunosuppression, with corticosteroids being the mainstay of virtually all treatment regimens. However, side effects of corticosteroids can be severe, and might be the cause of death in some patients. This retrospective, multi-centric study aimed at describing a population of Scandinavian dogs with meningoencephalitis of unknown origin in regards to reported side effects and cause of death, and to highlight possible differences in survival, when comparing corticosteroid monotherapy with other treatment regimens. RESULTS: Within the 5-year study period, 63 dogs were included. Of these, 35 (49.3%) died or were euthanized during the study period. Median survival time from time of diagnosis based on Kaplan-Meier curves for the overall population was 714 days (equivalent to around 25 months, range 0-1678 days). There was no statistically significant difference (P = 0.31) in survival between dogs treated with corticosteroid monotherapy (n = 26, median survival time 716 days, equivalent to around 25 months, range 5-911 days), dogs receiving a combination of corticosteroids and ciclosporin (n = 15, median survival time 916 days, equivalent to around 31 months, range 35-1678 days), and dogs receiving corticosteroids combined with either cytosine arabinoside, leflunomide, or a combination of 2 or more add-on drugs (n = 13, median survival time 1186 days, equivalent to around 40 months, range 121-1640 days). Side effects were registered for 47/63 dogs. Polyphagia (n = 37/47), polyuria/polydipsia (n = 37/47), diarrhea (n = 29/47) and lethargy (n = 28/47) were most frequently reported. The most common cause for euthanasia was relapse (n = 15/35, 42.9%), followed by insufficient or lack of treatment response (n = 9, 25.7%). Side effects were the direct cause of euthanasia in 2/35 dogs (5.7%). CONCLUSIONS: A large proportion of dogs in the overall population were euthanized due to relapse, emphasizing a need for treatment regimens aimed at specifically preventing relapse for an improved long-term survival. Side effects in dogs receiving corticosteroid monotherapy were rarely a direct cause of death, but were reported for all dogs. No statistically significant difference in survival was found when corticosteroid monotherapy was compared to other treatment regimens.


Assuntos
Doenças do Cão , Meningoencefalite , Animais , Cães , Humanos , Corticosteroides/efeitos adversos , Causas de Morte , Doenças do Cão/tratamento farmacológico , Doenças do Cão/etiologia , Meningoencefalite/tratamento farmacológico , Meningoencefalite/veterinária , Meningoencefalite/etiologia , Recidiva , Estudos Retrospectivos
2.
Fluids Barriers CNS ; 20(1): 6, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670437

RESUMO

BACKGROUND: Pathological cerebral conditions may manifest in altered composition of the cerebrospinal fluid (CSF). Although diagnostic CSF analysis seeks to establish pathological disturbances in the brain proper, CSF is generally sampled from the lumbar compartment for reasons of technical ease and ethical considerations. We here aimed to compare the molecular composition of CSF obtained from the ventricular versus the lumbar CSF compartments to establish a relevance for employing lumbar CSF as a proxy for the CSF bathing the brain tissue. METHODS: CSF was collected from 46 patients with idiopathic normal pressure hydrocephalus (iNPH) patients during their diagnostic workup (lumbar samples) and in connection with their subsequent CSF diversion shunt surgery (ventricular samples). The mass-spectrometry-based proteomic profile was determined in these samples and in addition, selected biomarkers were quantified with ELISA (S100B, neurofilament light (NfL), amyloid-ß (Aß40, Aß42), and total tau (T-tau) and phosphorylated tau (P-tau) forms). The latter analysis was extended to include paired porcine samples obtained from the lumbar compartment and the cerebromedullary cistern closely related to the ventricles. RESULTS: In total 1231 proteins were detected in the human CSF. Of these, 216 distributed equally in the two CSF compartments, whereas 22 were preferentially (or solely) present in the ventricular CSF and four in the lumbar CSF. The selected biomarkers of neurodegeneration and Alzheimer's disease displayed differential distribution, some with higher (S100B, T-tau, and P-tau) and some with lower (NfL, Aß40, Aß42) levels in the ventricular compartment. In the porcine samples, all biomarkers were most abundant in the lumbar CSF. CONCLUSIONS: The overall proteomic profile differs between the ventricular and the lumbar CSF compartments, and so does the distribution of clinically employed biomarkers. However, for a range of CSF proteins and biomarkers, one can reliably employ lumbar CSF as a proxy for ventricular CSF if or a lumbar/cranial index for the particular molecule has been established. It is therefore important to verify the compartmental preference of the proteins or biomarkers of interest prior to extrapolating from lumbar CSF to that of the ventricular fluid bordering the brain.


Assuntos
Doença de Alzheimer , Proteômica , Humanos , Animais , Suínos , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/patologia , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
3.
Fluids Barriers CNS ; 19(1): 52, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761330

RESUMO

BACKGROUND: The etiology of idiopathic normal pressure hydrocephalus (iNPH) is currently unknown. With no visible obstructions, altered cerebrospinal fluid (CSF) dynamics may explain the accumulation of ventricular fluid. We hypothesized that elevated osmolality in the CSF of iNPH patients could potentiate formation of ventricular fluid and thereby cause the disease progression and/or predict the surgical outcome. To address this hypothesis, we determined the lumbar and ventricular CSF osmolality of iNPH patients at different disease stages and compared with lumbar CSF samples obtained from control subjects. METHODS: The osmolality of CSF was determined on a total of 35 iNPH patients at diagnosis and at the subsequent treatment with shunt surgery (n = 20) and compared with the CSF osmolality from 20 control subjects. Simultaneously collected lumbar and ventricular CSF samples from experimental pigs were used to evaluate the compatibility between CSF from different compartments. RESULTS: We found no evidence of increased osmolality in the CSF of iNPH patients upon diagnosis or at the time of shunt treatment months after the diagnosis, compared with control individuals. CSF tapped from the lumbar space could be used as a read-out for ventricular CSF osmolality, as these were similar in both the patient group and in experimental pigs. We further observed no correlation between the CSF osmolality in iNPH patients and their responsiveness to shunt surgeries. CONCLUSIONS: The osmolality of lumbar CSF is a reliable reflection of the ventricular CSF osmolality, and is not elevated in iNPH patients. iNPH therefore does not appear to arise as a function of osmotic imbalances in the CSF system and CSF osmolality cannot serve as a biomarker for iNPH or as a predictive tool for shunt responsiveness.


Assuntos
Hidrocefalia de Pressão Normal , Animais , Biomarcadores/líquido cefalorraquidiano , Derivações do Líquido Cefalorraquidiano , Humanos , Hidrocefalia de Pressão Normal/líquido cefalorraquidiano , Concentração Osmolar , Suínos , Resultado do Tratamento
4.
Vet J ; 273: 105678, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34148601

RESUMO

Meningoencephalitides of Unknown Origin (MUO) comprises a group of non-infectious inflammatory brain conditions, which frequently cause severe neurological disease and death in dogs. Although multiple diagnostic markers have been investigated, a conclusive diagnosis, at present, essentially relies on postmortem histopathology. However, different groups of biomarkers, e.g. acute phase proteins, antibodies, cytokines, and neuro-imaging markers may prove useful in the diagnostic investigation of dogs with MUO. It appears from the current literature that acute phase proteins such as C-reactive protein are often normal in MUO, but may be useful to rule out steroid responsive meningitis-arteritis as well as other systemic inflammatory conditions. In antibody research, anti-glial fibrillary acidic protein (GFAP) may play a role, but further research is needed to establish this as a consistent marker of particularly Pug dog encephalitis. The proposed diagnostic markers often lack specificity to distinguish between the subtypes of MUO, but an increased expression of interferon-γ (IFN-γ) in necrotizing meningoencephalitis (NME) and interleukin-17 (IL-17) in granulomatous meningoencephalitis (GME) in tissue biopsies may indicate their potential as specific markers of NME and GME, respectively, suggesting further investigations of these in serum and CSF. While neuro-imaging is already an important part of the diagnostic work-up in MUO, further promising results have been shown with Positron Emission Tomography (PET) as well as proton resonance spectroscopy (1H MRS), which may be able to detect areas of necrosis and granulomas, respectively, with relatively high specificity. This review presents different groups of established and potential diagnostic markers of MUO assessing current results and future potential.


Assuntos
Biomarcadores/sangue , Doenças do Cão/diagnóstico , Meningoencefalite/veterinária , Proteínas de Fase Aguda , Animais , Biomarcadores/líquido cefalorraquidiano , Doenças do Cão/diagnóstico por imagem , Cães , Proteína Glial Fibrilar Ácida , Interferon gama , Espectroscopia de Ressonância Magnética , Meningoencefalite/diagnóstico , Meningoencefalite/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/veterinária
5.
Neuroreport ; 28(3): 134-140, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28079628

RESUMO

Inflammatory cytokines are potential modulators of infarct progression in acute ischaemic stroke, and are therefore possible targets for future treatment strategies. Cytokine studies in animal models of surgically induced stroke may, however, be influenced by the fact that the surgical intervention itself contributes towards the cytokine response. Community-dwelling domestic dogs suffer from spontaneous ischaemic stroke, and therefore, offer the opportunity to study the cytokine response in a noninvasive set-up. The aims of this study were to investigate cytokine concentrations in plasma and cerebrospinal fluid (CSF) in dogs with acute ischaemic stroke and to search for correlations between infarct volume and cytokine concentrations. Blood and CSF were collected from dogs less than 72 h after a spontaneous ischaemic stroke. Infarct volumes were estimated on MRIs. Interleukin (IL)-2, IL-6, IL-8, IL-10 and tumour necrosis factor in the plasma, CSF and brain homogenates were measured using a canine-specific multiplex immunoassay. IL-6 was significantly increased in plasma (P=0.04) and CSF (P=0.04) in stroke dogs compared with healthy controls. The concentrations of other cytokines, such as tumour necrosis factor and IL-2, were unchanged. Plasma IL-8 levels correlated significantly with infarct volume (Spearman's r=0.8, P=0.013). The findings showed increased concentrations of IL-6 in the plasma and CSF of dogs with acute ischaemic stroke comparable to humans. We believe that dogs with spontaneous stroke offer a unique, noninvasive means of studying the inflammatory processes that accompany stroke while reducing confounds that are unavoidable in experimental models.


Assuntos
Interleucina-6/sangue , Interleucina-6/líquido cefalorraquidiano , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/líquido cefalorraquidiano , Animais , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/etiologia , Isquemia Encefálica/complicações , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Modelos Animais de Doenças , Cães , Feminino , Imageamento por Ressonância Magnética , Masculino , Estatística como Assunto , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
6.
J Neuroinflammation ; 11: 203, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25498129

RESUMO

BACKGROUND: The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. METHODS: We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. RESULTS: We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. CONCLUSIONS: Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento , Fator de Necrose Tumoral alfa/administração & dosagem
7.
PLoS One ; 8(2): e54547, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23393557

RESUMO

The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to eliminate the disease in Alaskan Malamutes.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças do Cão/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polineuropatias/genética , Animais , Cães , Feminino , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA