Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Otolaryngol Head Neck Surg ; 149(5): 745-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23907267

RESUMO

OBJECTIVE: To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. STUDY DESIGN: Experimental animal study. SETTING: Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. METHODS: A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. RESULTS: Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. CONCLUSIONS: Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.


Assuntos
Apoptose/fisiologia , Implantes Cocleares , Surdez/terapia , Estimulação Elétrica/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Gânglio Espiral da Cóclea/patologia , Animais , Surdez/patologia , Surdez/fisiopatologia , Modelos Animais de Doenças , Ratos , Gânglio Espiral da Cóclea/fisiopatologia
2.
Anat Rec (Hoboken) ; 295(11): 1877-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23044862

RESUMO

The spiral ganglion neurons (SGNs) are the afferent neurons of the cochlea, connecting the auditory sensory cells-hair cells-to the brainstem cochlear nuclei. The neurotrophins neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) are expressed in the cochlea and both support SGN survival during development. These neurotrophins remain expressed in the postnatal cochlea and continue to play additional roles for SGNs, contributing to maintenance of hair cell-SGN synapses and regulating expression of ion channels, presynaptic and postsynaptic proteins, and SGN membrane electrical properties in a physiologically important spatial pattern. Remarkably, NT-3 and BDNF have different, even opposing, effects on SGN physiology despite the close similarity of their receptors TrkB and TrkC. Recent studies have also raised the possibility that precursor proneurotrophin forms of the neurotrophins play a role in responses to trauma in the cochlea, signaling through the proneurotrophin receptor p75(NTR) . Here, we review expression and function of neurotrophins and their p75(NTR) and Trk-family receptors in the cochlea. We focus, in particular, on neurotrophin functions other than support of SGN survival, including regulation of SGN neurite growth, synaptic and membrane physiology. These functions, unlike survival, are ones for which BDNF and NT-3 substantially differ in their effects. Signal transduction mechanisms of p75(NTR) and of Trk-family receptors are discussed, indicating how these lead to different responses, and we speculate on how BDNF and NT-3 can cause different phenotypic changes in SGNs. Because these complex signaling interactions remain incompletely understood, use of neurotrophins as therapeutic agents in the cochlea should be approached with caution.


Assuntos
Cóclea/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Animais , Cóclea/citologia , Humanos , Transdução de Sinais
3.
J Biol Chem ; 286(30): 26496-506, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652711

RESUMO

The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Envelhecimento/fisiologia , Dendritos/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/metabolismo
4.
PLoS Biol ; 9(4): e1000612, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21526220

RESUMO

Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Dinaminas/metabolismo , Hipocampo/citologia , Hipocampo/enzimologia , Homeostase , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Forma das Organelas/efeitos dos fármacos , Fosforilação , Multimerização Proteica , Transporte Proteico , Ratos
5.
Mol Cell Neurosci ; 36(1): 13-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17651987

RESUMO

By fusing the CaMKII-inhibitory peptide AIP to GFP, we constructed a specific and effective CaMKII inhibitor, GFP-AIP. Expression of GFP-AIP and/or dominant-inhibitory CaMKIV in cultured neonatal rat spiral ganglion neurons (SGNs) shows that CaMKII and CaMKIV act additively and in parallel to mediate the prosurvival effect of depolarization. Depolarization or expression of constitutively active CaMKII functionally inactivates Bad, indicating that this is one means by which CaMKII promotes neuronal survival. CaMKIV, but not CaMKII, requires CREB to promote SGN survival, consistent with the exclusively nuclear localization of CaMKIV and indicating that the principal prosurvival function of CaMKIV is activation of CREB. Consistent with this, a constitutively active CREB construct that provides a high level of CREB activity promotes SGN survival, although low levels of CREB activity did not do so. Also, in apoptotic SGNs, activation of CREB by depolarization is disabled, presumably as part of a cellular commitment to apoptosis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Proteína de Ligação a CREB/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Peptídeos/metabolismo , Cloreto de Potássio/farmacologia , Ratos , Gânglio Espiral da Cóclea/citologia , Transfecção , Proteína de Morte Celular Associada a bcl/metabolismo
6.
Dev Neurobiol ; 67(3): 316-25, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17443790

RESUMO

Spiral ganglion neurons (SGNs) provide afferent innervation to the cochlea and rely on contact with hair cells (HCs) for their survival. Following deafferentation due to hair cell loss, SGNs gradually die. In a rat culture model, we explored the ability of prosurvival members of the Bcl-2 family of proteins to support the survival and neurite outgrowth of SGNs. We found that overexpression of either Bcl-2 or Bcl-xL significantly increases SGN survival in the absence of neurotrophic factors, establishing that the Bcl-2 pathway is sufficient for SGN cell survival and that SGN deprived of trophic support die by an apoptotic mechanism. However, in contrast to observations in central neurons and PC12 cells where Bcl-2 appears to promote neurite growth, both Bcl-2 and Bcl-xL overexpression dramatically inhibit neurite outgrowth in SGNs. This inhibition of neurite growth by Bcl-2 occurs in nearly all SGNs even in the presence of multiple neurotrophic factors implying that Bcl-2 directly inhibits neurite growth rather than simply rescuing a subpopulation of neurons incapable of extending neurites without additional stimuli. Thus, although overexpression of prosurvival members of the Bcl-2 family prevents SGN loss following trophic factor deprivation, the inhibition of neurite growth by these molecules may limit their efficacy for support of auditory nerve maintenance or regeneration following hair cell loss.


Assuntos
Inibição Neural/fisiologia , Neuritos/fisiologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Gânglio Espiral da Cóclea/citologia , Proteína bcl-X/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Contagem de Células/métodos , Morte Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Ratos , Transfecção
7.
Proc Natl Acad Sci U S A ; 103(44): 16556-61, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17060608

RESUMO

Extracellular proton concentrations in the brain may be an important signal for neuron function. Proton concentrations change both acutely when synaptic vesicles release their acidic contents into the synaptic cleft and chronically during ischemia and seizures. However, the brain receptors that detect protons and their physiologic importance remain uncertain. Using organotypic hippocampal slices and biolistic transfection, we found the acid-sensing ion channel 1a (ASIC1a), localized in dendritic spines where it functioned as a proton receptor. ASIC1a also affected the density of spines, the postsynaptic site of most excitatory synapses. Decreasing ASIC1a reduced the number of spines, whereas overexpressing ASIC1a had the opposite effect. Ca(2+)-mediated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) signaling was probably responsible, because acid evoked an ASIC1a-dependent elevation of spine intracellular Ca(2+) concentration, and reducing or increasing ASIC1a levels caused parallel changes in CaMKII phosphorylation in vivo. Moreover, inhibiting CaMKII prevented ASIC1a from increasing spine density. These data indicate that ASIC1a functions as a postsynaptic proton receptor that influences intracellular Ca(2+) concentration and CaMKII phosphorylation and thereby the density of dendritic spines. The results provide insight into how protons influence brain function and how they may contribute to pathophysiology.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prótons , Canais de Sódio/metabolismo , Sinapses/metabolismo , Canais Iônicos Sensíveis a Ácido , Ácidos/metabolismo , Animais , Ligação Competitiva , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Peptídeos/farmacologia , Fosforilação , Técnicas de Cultura de Tecidos
8.
Glia ; 53(6): 593-600, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16432850

RESUMO

Vestibular schwannomas (VSs) are benign tumors that arise from the Schwann cells (SCs) lining the vestibular nerve. VS cells survive and proliferate far from neurons and axonally derived growth factors. We have previously shown that VSs produce the glial growth factor, neuregulin-1 (NRG1), and its receptors, ErbB2 and ErbB3. In the present work, we explore the contribution of constitutive NRG1:ErbB signaling to human VS cell proliferation. We confirm that human VSs, which express markers of immature and denervated SCs, also express endogenous NRG1 and activated ErbB2. We find that a blocking anti-NRG1 antibody and trastuzumab (Herceptin, HCN), a humanized anti-ErbB2 inhibitory monoclonal antibody, effectively inhibit NRG1 induced SC proliferation. Treatment of primary VS cultures with anti-NRG1 or HCN reduces cell proliferation in the absence of exogenous NRG1. Furthermore, conditioned medium from VS cell cultures contains NRG1 and stimulates SC proliferation in SC cultures, an effect that is inhibited by anti-NRG1 and HCN. These data suggest an autocrine pathway of VS growth stimulation involving NRG and ErbB receptors. Inhibition of constitutive NRG:ErbB signaling reduces VS cell proliferation in vitro and may have therapeutic potential for patients with VSs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Neuregulina-1/metabolismo , Neuroma Acústico/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Nervo Vestibular/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Transformação Celular Neoplásica/genética , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicoproteínas/metabolismo , Humanos , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/genética , Neuroma Acústico/genética , Neuroma Acústico/patologia , Proteínas Oncogênicas v-erbB/genética , Ratos , Receptor ErbB-2 , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Nervo Vestibular/patologia , Nervo Vestibular/fisiopatologia
9.
J Clin Endocrinol Metab ; 89(12): 6168-72, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15579773

RESUMO

RET/PTC1, a thyroid-specific oncogene, has been reported to down-regulate sodium/iodide symporter (NIS) expression and function in vitro and in vivo. Recently, RET/PTC1 has been shown to interfere with TSH signaling at multiple levels in thyroid cells. The objective of this study was to investigate whether RET/PTC1-mediated NIS reduction can be rescued by activating cAMP-protein kinase A (PKA) pathways. We showed that both forskolin and 8-Br-cAMP increase radioiodide uptake and NIS protein in RET/PTC1-expressing cells to the same extent as the parental PC Cl 3 cells. We found that RET/PTC1 decreases nuclear localization of catalytic PKA, and forskolin treatment was able to counteract this RET/PTC1 effect. Furthermore, transient expression of catalytic PKA in the nucleus increased radioiodide uptake and NIS protein in RET/PTC1-expressing cells. Taken together, these studies suggest that RET/PTC1 down-regulates NIS expression by interrupting TSH/cAMP signaling, and this RET/PTC1 effect can be reversed by activating cAMP-PKA pathways.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Núcleo Celular/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Radioisótopos do Iodo/farmacocinética , Proteínas de Fusão Oncogênica/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Fluorescência Verde/genética , Proteínas Tirosina Quinases , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/genética
10.
J Neurosci ; 23(3): 777-87, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12574406

RESUMO

We showed previously that cAMP is a survival-promoting stimulus for cultured postnatal rat spiral ganglion neurons (SGNs) and that depolarization promotes SGN survival in part via recruitment of cAMP signaling. We here investigate the subcellular locus of cAMP prosurvival signaling. Transfection of GPKI, a green fluorescent protein (GFP)-tagged cAMP-dependent protein kinase (PKA) inhibitor, inhibits the ability of the permeant cAMP analog cpt-cAMP [8-(4-chlorophenylthio)-cAMP] to promote survival, indicating that PKA activity is necessary. Transfection of GFP-tagged PKA (GPKA) is sufficient to promote SGN survival, but restriction of GPKA to the nucleus by addition of a nuclear localization signal (GPKAnls) almost completely abrogates its prosurvival effect. In contrast, GPKA targeted to the extranuclear cytoplasm by addition of a nuclear export signal (GPKAnes) promotes SGN survival as effectively as does GPKA. Moreover, GPKI targeted to the nucleus lacks inhibitory effect on SGN survival attributable to cpt-cAMP or depolarization. These data indicate an extranuclear target of PKA for promotion of neuronal survival. Consistent with this, we find that dominant-inhibitory CREB mutants inhibit the prosurvival effect of depolarization but not that of cpt-cAMP. SGN survival is compromised by overexpression of the proapoptotic regulator Bad, previously shown to be phosphorylated in the cytoplasm by PKA. This Bad-induced apoptosis is prevented by cpt-cAMP or by cotransfection of GPKA or of GPKAnes but not of GPKAnls. Thus, cAMP prevents SGN death through a cytoplasmic as opposed to nuclear action, and inactivation of Bad proapoptotic function is a mechanism by which PKA can prevent neuronal death.


Assuntos
Núcleo Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Neurônios/enzimologia , Gânglio Espiral da Cóclea/enzimologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Domínio Catalítico/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Citoplasma/enzimologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/fisiologia , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos , Tionucleotídeos/antagonistas & inibidores , Tionucleotídeos/farmacologia , Transfecção , Proteína de Morte Celular Associada a bcl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA