Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 41(11): e0012221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34424055

RESUMO

The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Peptídeos/metabolismo , Príons/química , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Cobre/farmacologia , Galactoquinase/genética , Humanos , Doença de Huntington/genética , Placa Amiloide/patologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Prion ; 12(1): 9-15, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227184

RESUMO

The yeast [PSI+] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI+] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI+] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.


Assuntos
Proteínas de Choque Térmico/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Candida albicans/genética , Candida albicans/fisiologia , Deleção de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanidina/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Estresse Fisiológico
3.
J Biol Chem ; 292(21): 8630-8641, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28373280

RESUMO

Prions arise from proteins that have two possible conformations: properly folded and non-infectious or misfolded and infectious. The [PSI+] yeast prion, which is the misfolded and self-propagating form of the translation termination factor eRF3 (Sup35), can be cured of its infectious conformation by overexpression of Hsp104, which helps dissolve the prion seeds. This dissolution depends on the trimming activity of Hsp104, which reduces the size of the prion seeds without increasing their number. To further understand the relationship between trimming and curing, trimming was followed by measuring the loss of GFP-labeled Sup35 foci from both strong and weak [PSI+] variants; the former variant has more seeds and less soluble Sup35 than the latter. Overexpression of Saccharomyces cerevisiae Hsp104 (Sc-Hsp104) trimmed the weak [PSI+] variants much faster than the strong variants and cured the weak variants an order of magnitude faster than the strong variants. Overexpression of the fungal Hsp104 homologs from Schizosaccharomyces pombe (Sp-Hsp104) or Candida albicans (Ca-Hsp104) also trimmed and cured the weak variants, but interestingly, it neither trimmed nor cured the strong variants. These results show that, because Sc-Hsp104 has greater trimming activity than either Ca-Hsp104 or Sp-Hsp104, it cures both the weak and strong variants, whereas Ca-Hsp104 and Sp-Hsp104 only cure the weak variants. Therefore, curing by Hsp104 overexpression depends on both the trimming ability of the fungal Hsp104 homolog and the strength of the [PSI+] variant: the greater the trimming activity of the Hsp104 homolog and the weaker the variant, the greater the curing.


Assuntos
Proteínas de Choque Térmico/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Teste de Complementação Genética , Proteínas de Choque Térmico/genética , Fatores de Terminação de Peptídeos/genética , Príons/genética , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24510904

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença/genética , Complexos Multiproteicos/metabolismo , Doença de Parkinson/enzimologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Western Blotting , Encéfalo/metabolismo , Fracionamento Celular , Primers do DNA/genética , Estudo de Associação Genômica Ampla/métodos , Complexo de Golgi/ultraestrutura , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Microscopia Confocal , Complexos Multiproteicos/genética , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
Traffic ; 15(1): 60-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24138026

RESUMO

The Hsc70 cochaperone, G cyclin-associated kinase (GAK), has been shown to be essential for the chaperoning of clathrin by Hsc70 in the cell. In this study, we used conditional GAK knockout mouse embryonic fibroblasts (MEFs) to determine the effect of completely inhibiting clathrin-dependent trafficking on the cell cycle. After GAK was knocked out, the cells developed the unusual phenotype of having multiple centrosomes, but at the same time failed to divide and ultimately became senescent. To explain this phenotype, we examined the signaling profile and found that mitogenic stimulation of the GAK KO cells and the control cells were similar except for increased phosphorylation of Akt. In addition, the disruption of intracellular trafficking caused by knocking out GAK destabilized the lysosomal membranes, resulting in DNA damage due to iron leakage. Knocking down clathrin heavy chain or inhibiting dynamin largely reproduced the GAK KO phenotype, but inhibiting only clathrin-mediated endocytosis by knocking down adaptor protein (AP2) caused growth arrest and centrosome overduplication, but no DNA damage or senescence. We conclude that disruption of clathrin-dependent trafficking induces senescence accompanied by centrosome overduplication because of a combination of DNA damage and changes in mitogenic signaling that uncouples centrosomal duplication from DNA replication.


Assuntos
Senescência Celular , Centrossomo/metabolismo , Clatrina/metabolismo , Endocitose , Proteínas Serina-Treonina Quinases/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Linhagem Celular , Clatrina/genética , Dano ao DNA , Lisossomos/metabolismo , Camundongos , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
PLoS One ; 7(6): e40329, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768276

RESUMO

Diffusion coefficients of huntingtin (Htt) fragments and SOD1 mutants expressed in cells were measured using fluorescence correlation spectroscopy. The diffusion mobilities of both non-pathological Htt fragments (25 polyQs) and pathological Htt fragments (103 polyQs) were much slower than expected for monomers suggesting that they oligomerize. The mobility of these fragments was unaffected by duration of expression or by over-expression of Hsp70 and Hsp40. However in cells with HttQ103 inclusions, diffusion measurements showed that the residual cytosolic HttQ103 was monomeric. These results suggest that both non-pathological and pathological Htt fragments form soluble oligomers in the cytosol with the properties of the oligomers determining whether they cause pathology. SOD1 with point mutations (A4V, G37R, and G85R) also had slower diffusional mobility than the wild-type protein whose mobility was consistent with that of a dimer. However, the decrease in mobility of the different SOD1 mutants did not correlate with their known pathology. Therefore, while soluble oligomers always seem to be present under conditions where cell pathology occurs, the presence of the oligomers, in itself, does not determine the extent of neuropathology.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Animais , Western Blotting , Extratos Celulares , Difusão , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Peptídeos/metabolismo , Mutação Puntual/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Estrutura Quaternária de Proteína , Solubilidade , Superóxido Dismutase-1 , Fatores de Tempo , Transfecção
7.
J Biol Chem ; 287(28): 23346-55, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22573320

RESUMO

Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN(+)] prion, which is the amyloid form of Rnq1, or [PSI(+)] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI(+)] yeast than in [PIN(+)], even though HttQP103 formed multiple aggregates in both [PSI(+)] and [PIN(+)] yeast. This toxicity was only observed in the strong [PSI(+)] variant, not the weak [PSI(+)] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI(+)] prion is primarily due to sequestration of the essential protein, Sup35.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Glutamina/genética , Humanos , Proteína Huntingtina , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Fatores de Terminação de Peptídeos/genética , Plasmídeos/genética , Príons/genética , Príons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transformação Genética , Expansão das Repetições de Trinucleotídeos/genética
8.
Arterioscler Thromb Vasc Biol ; 30(10): 2022-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20634472

RESUMO

OBJECTIVE: To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). METHODS AND RESULTS: We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. CONCLUSIONS: Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.


Assuntos
Lipoproteínas LDL/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pinocitose/fisiologia , Transporte Biológico Ativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Indóis/farmacologia , Macrolídeos/farmacologia , Macrófagos/citologia , Microscopia Imunoeletrônica , Pinocitose/efeitos dos fármacos , Sulfonamidas/farmacologia
9.
J Cell Sci ; 122(Pt 22): 4062-9, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19843586

RESUMO

To understand the role of clathrin-mediated endocytosis in the internalization of normal cellular prion protein (PrP(c)) in neuronal cells, N2a cells were depleted of clathrin by RNA interference. PrP(c) internalization via the constitutive endocytic pathway in the absence of Cu(2+) and the stimulated pathway in the presence of Cu(2+) were measured in both control and clathrin-depleted cells. Depletion of clathrin had almost no effect on the internalization of PrP(c) either in the presence or absence of Cu(2+), in contrast to the marked reduction observed in transferrin uptake. By contrast, the internalization of PrP(c) was inhibited by the raft-disrupting drugs filipin and nystatin, and by the dominant-negative dynamin-1 mutant dynamin-1 K44A, both in the presence and absence of Cu(2+). The internalized PrP(c) was found to colocalize with cargo that traffic in the Arf6 pathway and in large vacuoles in cells expressing the Arf6 dominant-active mutant. These results show that PrP(c) is internalized in a clathrin-independent pathway that is associated with Arf6.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Cavéolas/metabolismo , Clatrina/metabolismo , Dinamina I/metabolismo , Endocitose/fisiologia , Neuroblastoma/metabolismo , Proteínas PrPC/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular Tumoral , Clatrina/genética , Cobre/farmacologia , Dinamina I/genética , Endocitose/efeitos dos fármacos , Filipina/farmacologia , Camundongos , Neuroblastoma/ultraestrutura , Nistatina/farmacologia , Interferência de RNA , Transdução de Sinais/fisiologia , Transferrina/metabolismo
10.
J Cell Sci ; 120(Pt 15): 2663-71, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17635996

RESUMO

The effect of normal cellular prion protein (PrP(C)) on abnormal protein aggregation was examined by transfecting huntingtin fragments (Htt) into SN56 neuronal-derived cells depleted of PrP(C) by RNA interference. PrP(C) depletion caused an increase in both the number of cells containing granules and the number of apoptotic cells. Consistent with the increase in Htt aggregation, PrP(C) depletion caused an decrease in proteasome activity and a decrease in the activities of cellular defense enzymes compared with control cells whereas reactive oxygen species (ROS) increased more than threefold. Therefore, PrP(C) may protect against Htt toxicity in neuronal cells by increasing cellular defense proteins, decreasing ROS and increasing proteasome activity thereby increasing Htt degradation. Depletion of endogenous PrP(C) in non-neuronal Caco-2 and HT-29 cells did not affect ROS levels or proteasome activity suggesting that only in neuronal cells does PrP(C) confer protection against Htt toxicity. The protective effect of PrP(C) was further evident in that overexpression of mouse PrP(C) in SN56 cells transfected with Htt caused a decrease in both the number of cells with Htt granules and the number of apoptotic cells, whereas there was no effect of PrP(C) expression in non-neuronal NIH3T3 or CHO cells. Finally, in chronically scrapie (PrP(Sc))-infected cells, ROS increased more than twofold while proteasome activity was decreased compared to control cells. Although this could be a direct effect of PrP(Sc), it is also possible that, since PrP(C) specifically prevents pathological protein aggregation in neuronal cells, partial loss of PrP(C) itself increases PrP(Sc) aggregation.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina , Doença de Huntington , Camundongos , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo
11.
Mol Biol Cell ; 18(8): 2991-3001, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538018

RESUMO

The adaptor protein 1 (AP1) complex is a heterotetramer that participates in cargo sorting into clathrin-coated vesicles at the trans-Golgi network (TGN) and endosomes. The gamma subunit of AP1 possesses a C-terminal "ear" domain that recruits a cohort of accessory proteins through recognition of a shared canonical motif, PsiG[PDE][PsiLM] (where Psi is an aromatic residue). The physiological relevance of these ear-motif interactions, however, remains to be demonstrated. Here we report that the cyclin G-associated kinase (GAK) has two sequences fitting this motif, FGPL and FGEF, which mediate binding to the AP1-gamma-ear domain in vitro. Mutation of both gamma-ear-binding sequences or depletion of AP1-gamma by RNA interference (RNAi) decreases the association of GAK with the TGN in vivo. Depletion of GAK by RNAi impairs the sorting of the acid hydrolase, cathepsin D, to lysosomes. Importantly, expression of RNAi-resistant GAK restores the lysosomal sorting of cathepsin D in cells depleted of endogenous GAK, whereas expression of a similar construct bearing mutations in both gamma-ear-binding sequences fails to correct the sorting defect. Thus, interactions between the PsiG[PDE][PsiLM]-motif sequences in GAK and the AP1-gamma-ear domain are critical for the recruitment of GAK to the TGN and the function of GAK in lysosomal enzyme sorting.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sobrevivência Celular , Sequência Consenso , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transporte Proteico , Rede trans-Golgi/metabolismo
12.
J Biol Chem ; 280(17): 17213-20, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15710626

RESUMO

Members of the RME-1/mRme-1/EHD1 protein family have recently been shown to function in the recycling of membrane proteins from recycling endosomes to the plasma membrane. RME-1 family proteins are normally found in close association with recycling endosomes and the vesicles and tubules emanating from these endosomes, consistent with the proposal that these proteins directly participate in endosomal transport. RME-1 family proteins contain a C-terminal EH (eps15 homology) domain thought to be involved in linking RME-1 to other endocytic proteins, a coiled-coil domain thought to be involved in homo-oligomerization and an N-terminal P-loop domain thought to mediate nucleotide binding. In the present study, we show that both Caenorhabditis elegans and mouse RME-1 proteins bind and hydrolyze ATP. No significant GTP binding or hydrolysis was detected. Mutation or deletion of the ATP-binding P-loop prevented RME-1 oligomerization and at the same time dissociated RME-1 from endosomes. In addition, ATP depletion caused RME-1 to lose its endosome association in the cell, resulting in cytosolic localization. Taken together, these results indicate that ATP binding is required for oligomerization of mRme-1/EHD1, which in turn is required for its association with endosomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/química , Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Animais , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Citosol/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Cinética , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Nucleotídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/química
13.
Eukaryot Cell ; 4(2): 289-97, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15701791

RESUMO

The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/genética , Fracionamento Celular , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Choque Térmico HSP70/genética , Fatores de Terminação de Peptídeos , Príons/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
J Biol Chem ; 280(8): 7156-61, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15596443

RESUMO

Clathrin assembly into coated pits and vesicles is promoted by accessory proteins such as auxilin and AP180, and disassembly is effected by the Hsc70 ATPase. These interactions may be mimicked in vitro by the assembly and disassembly of clathrin "baskets." The chimera C58J is a minimal construct capable of supporting both reactions; it consists of the C58 moiety of AP180, which facilitates clathrin assembly, fused with the J domain of auxilin, which recruits Hsc70 to baskets. We studied the process of disassembly by using cryo-electron microscopy to identify the initial binding site of Hsc70 on clathrin-C58J baskets at pH 6, under which conditions disassembly does not proceed further. Hsc70 interactions involve two sites: (i) its major interaction is with the sides of spars of the clathrin lattice, close to the triskelion hubs and (ii) there is another interaction at a site at the N-terminal hooks of the clathrin heavy chains, presumably via the J domain of C58J. We propose that individual triskelions may be extricated from the clathrin lattice by the concerted action of up to six Hsc70 molecules, which intercalate between clathrin leg segments, prying them apart. Three Hsc70s remain bound to the dissociated triskelion, close to its trimerization hub.


Assuntos
Adenosina Trifosfatases/metabolismo , Vesículas Revestidas por Clatrina/química , Proteínas de Choque Térmico HSP70/metabolismo , Animais , Auxilinas , Sítios de Ligação , Bovinos , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Microscopia Crioeletrônica , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/química , Modelos Biológicos , Proteínas Monoméricas de Montagem de Clatrina , Complexos Multiproteicos/química , Proteínas Recombinantes de Fusão
15.
J Cell Sci ; 117(Pt 21): 4991-5000, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15367583

RESUMO

The molecular chaperone Hsp70 interacts with misfolded proteins and also accumulates in the nucleus during heat shock. Using GFP-Hsp70 and fluorescence recovery after photobleaching, we show that Hsp70 accumulates in the nucleus during heat shock not only because its inflow rate increases but also because of a marked decrease in its outflow rate. Dynamic imaging also shows that GFP-Hsp70 has greatly reduced mobility when it interacts with organelles such as nucleoli in heat-shocked cells or the large inclusions formed from fragments of mutant huntingtin protein. In heat-shocked cells, nucleoplasmic Hsp70 has reduced mobility relative to the cytoplasm, whereas the ATPase-deficient mutant of Hsp70, Hsp70(K71E), is almost completely immobilized both in the nucleoplasm and the cytoplasm. Moreover, the Hsp70 mutant shows reduced mobility in the presence of diffusive huntingtin fragments with expanded polyglutamine repeats. This provides strong evidence that Hsp70 interacts not only with organelles but also with diffusive proteins in the nucleoplasm and cytoplasm during heat shock as well as with diffusive huntingtin fragments.


Assuntos
Proteínas de Choque Térmico HSP70/fisiologia , Temperatura Alta , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Proteína Huntingtina , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Fatores de Tempo
16.
Protein Sci ; 13(8): 2029-44, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273304

RESUMO

A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.


Assuntos
Trifosfato de Adenosina/química , Auxilinas/química , Proteínas de Choque Térmico HSP70/química , Modelos Químicos , Software , Trifosfato de Adenosina/metabolismo , Animais , Auxilinas/metabolismo , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Ciclização de Substratos
17.
Biochemistry ; 43(11): 3111-9, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15023062

RESUMO

The three-dimensional structure of the C-terminal 20 kDa portion of auxilin, which consists of the clathrin binding region and the C-terminal J-domain, has been determined by NMR. Auxilin is an Hsp40 family protein that catalytically supports the uncoating of clathrin-coated vesicles through recruitment of Hsc70 in an ATP hydrolysis-driven process. This 20 kDa auxilin construct contains the minimal sequential region required to uncoat clathrin-coated vesicles catalytically. The tertiary structure consists of six helices, where the first three are unique to auxilin and believed to be important in the catalytic uncoating of clathrin. The last three helices correspond to the canonical J-domain of Hsp40 proteins. The first helix, helix 1, which contains a conserved FEDLL motif believed to be necessary for clathrin binding, is transient and not packed against the rest of the structure. Helix 1 is joined to helix 2 by a flexible linker. Helix 2 packs loosely against the J-domain surface, whereas helix 3 packs tightly and makes critical contributions to the J-domain core. A long insert loop, also unique to the auxilin J-domain, is seen between helix 4 and helix 5. Comparison with a previously reported structure of auxilin containing only helices 3-6 shows a significant difference in the invariant HPD segment of the J-domain. The region where helix 1 is located corresponds to the expected region of the unstructured G/F-rich domain seen in DnaJ, i.e., the canonical N-terminal J-domain protein. In contrast, the location of helix 1 differs from the substrate binding regions of two other Hsp40 proteins, Escherichia coli Hsc20 and viral large T antigen. The variety of biological functions performed by Hsp40 proteins such as auxilin, as well as the observed differences in the structure and function of their substrate binding regions, supports the notion that Hsp40 proteins act as target-specific adaptors that recruit their more general Hsp70 partners to specific biological roles.


Assuntos
Auxilinas/química , Vesículas Revestidas por Clatrina/metabolismo , Fragmentos de Peptídeos/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Auxilinas/fisiologia , Catálise , Bovinos , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/enzimologia , Cristalografia por Raios X , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA