Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37625434

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Pré-Escolar , Mali/epidemiologia , Burkina Faso/epidemiologia , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Vacinação , Quimioprevenção , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
2.
Lancet Glob Health ; 12(1): e33-e44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097295

RESUMO

BACKGROUND: Severe anaemia is associated with high in-hospital mortality among young children. In malaria-endemic areas, surviving children also have an increased risk of mortality or readmission after hospital discharge. We conducted a systematic review and individual patient data meta-analysis to determine the efficacy of monthly post-discharge malaria chemoprevention in children recovering from severe anaemia. METHODS: This analysis was conducted according to PRISMA-IPD guidelines. We searched multiple databases on Aug 28, 2023, without date or language restrictions, for randomised controlled trials comparing monthly post-discharge malaria chemoprevention with placebo or standard of care among children (aged <15 years) admitted with severe anaemia in malaria-endemic Africa. Trials using daily or weekly malaria prophylaxis were not eligible. The investigators from all eligible trials shared pseudonymised datasets, which were standardised and merged for analysis. The primary outcome was all-cause mortality during the intervention period. Analyses were performed in the modified intention-to-treat population, including all randomly assigned participants who contributed to the endpoint. Fixed-effects two-stage meta-analysis of risk ratios (RRs) was used to generate pooled effect estimates for mortality. Recurrent time-to-event data (readmissions or clinic visits) were analysed using one-stage mixed-effects Prentice-Williams-Peterson total-time models to obtain hazard ratios (HRs). This study is registered with PROSPERO, CRD42022308791. FINDINGS: Our search identified 91 articles, of which 78 were excluded by title and abstract, and a further ten did not meet eligibility criteria. Three double-blind, placebo-controlled trials, including 3663 children with severe anaemia, were included in the systematic review and meta-analysis; 3507 (95·7%) contributed to the modified intention-to-treat analysis. Participants received monthly sulfadoxine-pyrimethamine until the end of the malaria transmission season (mean 3·1 courses per child [range 1-6]; n=1085; The Gambia), monthly artemether-lumefantrine given at the end of weeks 4 and 8 post discharge (n=1373; Malawi), or monthly dihydroartemisinin-piperaquine given at the end of weeks 2, 6, and 10 post discharge (n=1049; Uganda and Kenya). During the intervention period, post-discharge malaria chemoprevention was associated with a 77% reduction in mortality (RR 0·23 [95% CI 0·08-0·70], p=0·0094, I2=0%) and a 55% reduction in all-cause readmissions (HR 0·45 [95% CI 0·36-0·56], p<0·0001) compared with placebo. The protective effect was restricted to the intervention period and was not sustained after the direct pharmacodynamic effect of the drugs had waned. The small number of trials limited our ability to assess heterogeneity, its sources, and publication bias. INTERPRETATION: In malaria-endemic Africa, post-discharge malaria chemoprevention reduces mortality and readmissions in recently discharged children recovering from severe anaemia. Post-discharge malaria chemoprevention could be a valuable strategy for the management of this group at high risk. Future research should focus on methods of delivery, options to prolong the protection duration, other hospitalised groups at high risk, and interventions targeting non-malarial causes of post-discharge morbidity. FUNDING: The Research-Council of Norway and the Bill-&-Melinda-Gates-Foundation through the Worldwide-Antimalarial-Research-Network.


Assuntos
Anemia , Antimaláricos , Malária , Criança , Humanos , Pré-Escolar , Antimaláricos/uso terapêutico , Alta do Paciente , Assistência ao Convalescente , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/complicações , Malária/epidemiologia , Malária/prevenção & controle , Anemia/epidemiologia , Combinação de Medicamentos , Quênia , Quimioprevenção , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Malar J ; 22(1): 348, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957702

RESUMO

BACKGROUND: The overlap in the epidemiology of malaria and helminths has been identified as a potential area to exploit for the development of an integrated control strategy that may help to achieve elimination of malaria and helminths. A randomized, controlled, observer-blind trial was conducted to assess the feasibility and safety of combining mass drug administration (MDA) for schistosomiasis and soil transmitted helminths (STH) with seasonal malaria chemoprevention (SMC) among children living in Senegal. METHODS: Female and male children aged 1-14 years were randomized 1:1:1, to receive Vitamin A and Zinc on Day 0, followed by SMC drugs (sulfadoxine-pyrimethamine and amodiaquine) on Days 1-3 (control group); or praziquantel and Vitamin A on Day 0, followed by SMC drugs on Days 1-3 (treatment group 1); or albendazole and praziquantel on Day 0, followed by SMC drugs on Days 1-3 (treatment group 2). Safety assessment was performed by collecting adverse events from all children for six subsequent days following administration of the study drugs. Pre- and post-intervention, blood samples were collected for determination of haemoglobin concentration, malaria microscopy, and PCR assays. Stool samples were analyzed using Kato-Katz, Merthiolate-iodine-formalin and PCR methods. Urine filtration, PCR and circulating cathodic antigen tests were also performed. RESULTS: From 9 to 22 June 2022, 627 children aged 1-14 years were randomized into the three groups described above. Mild, transient vomiting was observed in 12.6% (26/206) of children in treatment group 2, in 10.6% (22/207) in group 1, and in 4.2% (9/214) in the control group (p = 0.005). Pre-intervention, the geometric mean value of Plasmodium falciparum parasite density was highest among children who received albendazole, praziquantel with SMC drugs. Post-intervention, the parasite density was highest among children who received SMC drugs only. Children who received praziquantel and SMC drugs had a lower risk of developing severe anaemia than their counterparts who received SMC drugs alone (OR = 0.81, 95% CI 0.13-5.00, p = 0.63). CONCLUSIONS: Integration of MDA for helminths with SMC drugs was safe and feasible among Senegalese children. These findings support further evaluation of the integrated control model. TRIAL REGISTRATION: The study is registered at Clinical Trial.gov NCT05354258.


Assuntos
Antimaláricos , Helmintos , Malária , Animais , Humanos , Criança , Masculino , Feminino , Antimaláricos/efeitos adversos , Praziquantel/efeitos adversos , Albendazol/efeitos adversos , Administração Massiva de Medicamentos , Estações do Ano , Estudos de Viabilidade , Vitamina A/uso terapêutico , Malária/epidemiologia , Quimioprevenção/efeitos adversos , Quimioprevenção/métodos
4.
Vaccine ; 41(50): 7573-7580, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37981473

RESUMO

BACKGROUND: People living with HIV constitute an important part of the population in regions at risk of Ebola virus disease outbreaks. The two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen induces strong immune responses in HIV-positive (HIV+) adults but the durability of this response is unknown. It is also unclear whether this regimen can establish immune memory to enable an anamnestic response upon re-exposure to antigen. METHODS: This paper describes an open-label, phase 2 trial, conducted in Kenya and Uganda, of Ad26.ZEBOV booster vaccination in HIV+ participants who had previously received the Ad26.ZEBOV, MVA-BN-Filo primary regimen. HIV+ adults with well-controlled infection and on highly active antiretroviral therapy were enrolled, vaccinated with booster, and followed for 28 days. The primary objectives were to assess Ad26.ZEBOV booster safety and antibody responses against the Ebola virus glycoprotein using the Filovirus Animal Non-Clinical Group ELISA. RESULTS: The Ad26.ZEBOV booster was well-tolerated in HIV+ adults with mostly mild to moderate symptoms. No major safety concerns or serious adverse events were reported. Four and a half years after the primary regimen, 24/26 (92 %) participants were still classified as responders, with a pre-booster antibody geometric mean concentration (GMC) of 726 ELISA units (EU)/mL (95 %CI 447-1179). Seven days after the booster, the GMC increased 54-fold to 38,965 EU/mL (95 %CI 23532-64522). Twenty-one days after the booster, the GMC increased 176-fold to 127,959 EU/mL (95 %CI 93872-174422). The responder rate at both post-booster time points was 100 %. CONCLUSIONS: The Ad26.ZEBOV booster is safe and highly immunogenic in HIV+ adults with well-controlled infection. The Ad26.ZEBOV, MVA-BN-Filo regimen can generate long-term immune memory persisting for at least 4·5 years, resulting in a robust anamnestic response. TRIAL REGISTRATION: Pan African Clinical Trial Registry (PACTR202102747294430). CLINICALTRIALS: gov (NCT05064956).


Assuntos
Vacinas contra Ebola , Ebolavirus , Infecções por HIV , Doença pelo Vírus Ebola , Adulto , Humanos , Anticorpos Antivirais , HIV , Infecções por HIV/tratamento farmacológico , Imunogenicidade da Vacina , Quênia , Uganda , Vaccinia virus
5.
Am J Trop Med Hyg ; 109(5): 1047-1056, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722662

RESUMO

Integration of vertical programs for the control of malaria, schistosomiasis, and soil-transmitted helminthiasis has been recommended to achieve elimination of malaria and neglected tropical diseases (NTD) by 2030. This qualitative study was conducted within the context of a randomized controlled trial to explore the perceptions and views of parents/caregivers of at-risk children and healthcare providers to determine their acceptability of the integrated malaria-helminth treatment approach. Randomly selected parents/caregivers of children enrolled in the trial, healthcare providers, trial staff, malaria, and NTD program managers were interviewed using purpose-designed topic guides. Transcripts obtained from the interviews were coded and common themes identified using content analysis were triangulated. Fifty-seven study participants comprising 26 parents/caregivers, 10 study children aged ≥ 10 years, 15 trial staff, four healthcare providers, and two managers from the Senegal Ministry of Health were interviewed. Thirty-eight of the participants (66.7%) were males, and their ages ranged from 10 to 65 years. Overall, the integrated malaria-helminth treatment approach was considered acceptable, but the study participants expressed concerns about the taste, smell, and side effects associated with amodiaquine and praziquantel in the combination package. Reluctance to accept the medications was also observed among children aged 10 to 14 years due to peer influence and gender-sensitive cultural beliefs. Addressing concerns about the taste and smell of amodiaquine and praziquantel is needed to optimize the uptake of the integrated treatment program. Also, culturally appropriate strategies need to be put in place to cater for the inclusion of children aged 10 to 14 years in this approach.


Assuntos
Helmintíase , Helmintos , Malária , Criança , Masculino , Animais , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Praziquantel/uso terapêutico , Amodiaquina/uso terapêutico , Senegal/epidemiologia , Helmintíase/tratamento farmacológico , Helmintíase/epidemiologia , Helmintíase/prevenção & controle , Malária/tratamento farmacológico , Malária/prevenção & controle
6.
BMJ Glob Health ; 8(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147016

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E malaria vaccine given alongside seasonal malaria chemoprevention (SMC) substantially reduces malaria in young children. The WHO has recommended the use of RTS,S/AS01E, including seasonal vaccination, in areas with seasonal malaria transmission. This study aimed to identify potential strategies to deliver RTS,S/AS01E, and assess the considerations and recommendations for delivery of seasonal malaria vaccination in Mali, a country with highly seasonal malaria. METHODS: Potential delivery strategies for RTS,S/AS01E in areas with seasonal malaria were identified through a series of high level discussions with the RTS,S/AS01E plus SMC trial investigators, international and national immunisation and malaria experts, and through the development of a theory of change. These were explored through qualitative in-depth interviews with 108 participants, including national-level, regional-level and district-level malaria and immunisation programme managers, health workers, caregivers of children under 5 years of age, and community stakeholders. A national-level workshop was held to confirm the qualitative findings and work towards consensus on an appropriate strategy. RESULTS: Four delivery strategies were identified: age-based vaccination delivered via the Essential Programme on Immunisation (EPI); seasonal vaccination via EPI mass vaccination campaigns (MVCs); a combination of age-based priming vaccination doses delivered via the EPI clinics and seasonal booster doses delivered via MVCs; and a combination of age-based priming vaccination doses and seasonal booster doses, all delivered via the EPI clinics, which was the preferred strategy for delivery of RTS,S/AS01E in Mali identified during the national workshop. Participants recommended that supportive interventions, including communications and mobilisation, would be needed for this strategy to achieve required coverage. CONCLUSIONS: Four delivery strategies were identified for administration of RTS,S/AS01E alongside SMC in countries with seasonal malaria transmission. Components of these delivery strategies were defined as the vaccination schedule, and the delivery system(s) plus the supportive interventions needed for the strategies to be effective. Further implementation research and evaluation is needed to explore how, where, when and what effective coverage is achievable via these new strategies and their supportive interventions.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Pré-Escolar , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Estações do Ano , Malária/prevenção & controle , Vacinação
7.
Front Public Health ; 11: 1087044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935683

RESUMO

Background: Concurrent infections of Plasmodium falciparum with Soil Transmitted Helminths (STH) and Schistosoma spp are still a major public health problem among children living in Sub-Saharan Africa. We conducted two prospective studies among children living in urban and rural settings of Senegal, where control programmes for malaria, STH and schistosomiasis have been sustained, to determine the prevalence of malaria-helminth co-infection. Methods: We enrolled 910 children aged 1-14 years from Saraya and Diourbel districts of Senegal in June and November 2021, respectively. We collected finger-prick blood samples from the children for malaria parasite detection using microscopy and PCR methods. Stool samples were also collected and Kato-Katz and PCR methods were used to detect STH and S. mansoni; and Merthiolate-iodine-formalin (MIF) test for other intestinal protozoans. Urine samples were analyzed using a filtration test, Point of Care Circulating Cathodic Antigens (POC-CCA) and PCR methods for detection of S. haematobium. Statistical analyses were performed to compare the continuous and categorical variables across the two study sites and age groups, as well as using the adjusted Odds ratios (aOR) to explore risk factors for malaria-helminth co-infections. Results: The overall prevalence of polyparasitism with P. falciparum, STH, S. haematobium and S. mansoni among children in the two study sites was 2.2% (20/910) while prevalence of P. falciparum-S. haematobium co-infection was 1.1% (10/910); P. falciparum-S. mansoni 0.7% (6/910) and P. falciparum with any intestinal protozoan 2.4% (22/910). Co-infection was slightly higher among 5-14 year old children (17/629, 2.7%; 95% CI: 1.43-3.97) than 1-4 years (3/281, 1.1%; 95% CI: -0.12-2.32) and, in boys (13/567, 2.3%; 95% CI: 1.27-3.96) than girls (7/343, 2.1%; 95% CI: 0.52-3.48). Children aged 5-14 years (aOR = 3.37; 95% CI: 0.82-13.77, p = 0.09), who were boys (aOR = 1.44; 95% CI: 0.48-4.36, p = 0.51) and lived in Saraya (aOR = 1.27; 95% CI: 0.24-6.69, p = 0.77) had a higher risk of malaria-helminth co-infection than other age group, in girls and those who lived in Diourbel. Living in houses with spaces between the walls and roofs as well as frequent contacts with water during swimming were statistically significant risk factors for malaria-helminth co-infection. Conclusions: The prevalence of malaria-helminth co-infection is low in two districts in Senegal, possibly due to sustained implementation of effective control measures for malaria and NTDs. These findings could help to develop and implement strategies that would lead to elimination of malaria and helminths in the study areas.


Assuntos
Coinfecção , Helmintíase , Helmintos , Malária Falciparum , Malária , Masculino , Animais , Feminino , Humanos , Criança , Pré-Escolar , Adolescente , Coinfecção/epidemiologia , Prevalência , Senegal/epidemiologia , Estudos Prospectivos , Helmintíase/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Solo/parasitologia
8.
Lancet Glob Health ; 10(12): e1782-e1792, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400084

RESUMO

BACKGROUND: A 2021 clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in preventing clinical malaria. The combination of these two interventions provided significant additional protection against clinical and severe malaria outcomes. Projections of the effect of this novel approach to RTS,S vaccination in seasonal transmission settings for extended timeframes and across a range of epidemiological settings are needed to inform policy recommendations. METHODS: We used a mathematical, individual-based model of malaria transmission that was fitted to data on the relationship between entomological inoculation rate and parasite prevalence, clinical disease, severe disease, and deaths from multiple sites across Africa. The model was validated with results from a phase 3b trial assessing the effect of SV-RTS,S in Mali and Burkina Faso. We developed three intervention efficacy models with varying degrees and durations of protection for our population-level modelling analysis to assess the potential effect of an RTS,S vaccination schedule based on age (doses were delivered to children aged 6 months, 7·5 months, and 9 months for the first three doses, and at 27 months of age for the fourth dose) or season (children aged 5-17 months at the time of first vaccination received the first three doses in the 3 months preceding the transmission season, with any subsequent doses up to five doses delivered annually) in seasonal transmission settings both in the absence and presence of SMC with sulfadoxine-pyrimethamine plus amodiaquine. This is modelled as a full therapeutic course delivered every month for four or five months of the peak in transmission season. Estimates of cases and deaths averted in a population of 100 000 children aged 0-5 years were calculated over a 15-year time period for a range of levels of malaria transmission intensity (Plasmodium falciparum parasite prevalence in children aged 2-10 years between 10% and 65%) and over two west Africa seasonality archetypes. FINDINGS: Seasonally targeting RTS,S resulted in greater absolute reductions in malaria cases and deaths compared with an age-based strategy, averting an additional 14 000-47 000 cases per 100 000 children aged 5 years and younger over 15 years, dependent on seasonality and transmission intensity. We predicted that adding seasonally targeted RTS,S to SMC would reduce clinical incidence by up to an additional 42 000-67 000 cases per 100 000 children aged 5 years and younger over 15 years compared with SMC alone. Transmission season duration was a key determinant of intervention effect, with the advantage of adding RTS,S to SMC predicted to be smaller with shorter transmission seasons. INTERPRETATION: RTS,S vaccination in seasonal settings could be a valuable additional tool to existing interventions, with seasonal delivery maximising the effect relative to an age-based approach. Decisions surrounding deployment strategies of RTS,S in such settings will need to consider the local and regional variations in seasonality, current rates of other interventions, and potential achievable RTS,S coverage. FUNDING: UK Medical Research Council, UK Foreign Commonwealth & Development Office, The Wellcome Trust, and The Royal society.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Vacinas Antimaláricas/uso terapêutico , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Plasmodium falciparum , Burkina Faso/epidemiologia
9.
Diseases ; 10(4)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412595

RESUMO

Drugs have been used to prevent malaria for centuries, but only recently have they been used on a large scale to prevent malaria in the resident population of malaria endemic areas in sub-Saharan Africa. This paper discusses some of the reasons for the hesitancy in adoption of chemopreventive strategies in sub-Saharan Africa, reasons why this hesitancy has been overcome in recent years and the range of target groups now identified by the World Health Organization as those who can benefit most from chemoprevention. Adoption of carefully targeted chemopreventive strategies could help reverse the recent stagnation in the decline in malaria in sub-Saharan Africa that had been taking place during the previous two decades.

10.
BMC Med ; 20(1): 352, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203149

RESUMO

BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Quimioprevenção , Humanos , Lactente , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Plasmodium falciparum , Estações do Ano , Vacinação
11.
Trials ; 23(1): 627, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922819

RESUMO

BACKGROUND: Malaria remains a major health problem, especially in sub-Saharan Africa where more than 90% of the disease and where nearly all deaths occur in children. Adding to this high burden is the co-existence of intestinal and genito-urinary helminth infections. Existing control programmes for these helminths are operating sub-optimally. Conversely, a malaria prevention programme, called seasonal malaria chemoprevention (SMC), introduced in 2012 has achieved more than 75% treatment coverage and prevented 75-85% cases of uncomplicated and severe malaria in children. This encouraging development supports the need to explore strategies involving the integration of helminth control with successful platforms such as SMC. This would align worm and malaria control within the Sustainable Development Goals of ending the diseases of poverty and promoting health and well-being for those at risk. METHODS: This study will have quantitative and qualitative components. The quantitative component will be a three-arm, observer-blind, placebo-controlled, interventional study of co-administration of SMC and anthelminthic drugs to pre-school and school-age children in Saraya district, southeast Senegal. Six hundred children aged 1-14 years will be randomly assigned to receive either SMC drugs only, SMC drugs and praziquantel or SMC drugs and albendazole and praziquantel at a ratio of 1:1:1. The primary outcome will be solicited and unsolicited adverse reactions to the study medications. The secondary outcomes will be the prevalence and intensity of Plasmodium-helminth co-infection and the prevalence of anaemia and mean haemoglobin concentration. The qualitative component of the study will include the conduct of structured interviews to assess the acceptability, feasibility, enablers and barriers to the combined use of anthelminthic and SMC drugs among randomly selected parents/caregivers of children enrolled in the study and health care workers responsible for the delivery of the combined services. DISCUSSION: This study will provide evidence to boost the public health recommendations for combined malaria and helminth control. If successful, this project will reinforce the evidence that health care systems in developing countries can be comprehensive health management rather than focussed on vertical management of a single disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT05354258. Registered on 28 April 2022. PACTR202204794105273. Registered on 25 April 2022.


Assuntos
Anti-Helmínticos , Malária , Administração Massiva de Medicamentos , Adolescente , Anti-Helmínticos/administração & dosagem , Criança , Pré-Escolar , Humanos , Lactente , Malária/prevenção & controle , Administração Massiva de Medicamentos/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estações do Ano
12.
Malar J ; 21(1): 77, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264158

RESUMO

The populations of moderate or highly malaria endemic areas gradually acquire some immunity to malaria as a result of repeated exposure to the infection. When this exposure is reduced as a result of effective malaria control measures, subjects who benefitted from the intervention may consequently be at increased risk of malaria if the intervention is withdrawn, especially if this is done abruptly, and an effective malaria vector remains. There have been many examples of this occurring in the past, a phenomenon often termed 'rebound malaria', with the incidence of malaria rebounding to the level present before the intervention was introduced. Because the main clinical burden of malaria in areas with a high level of malaria transmission is in young children, malaria control efforts have, in recent decades, focussed on this group, with substantial success being obtained with interventions such as insecticide treated mosquito nets, chemoprevention and, most recently, malaria vaccines. These are interventions whose administration may not be sustained. This has led to concerns that in these circumstances, the overall burden of malaria in children may not be reduced but just delayed, with the main period of risk being in the period shortly after the intervention is no longer given. Although dependent on the same underlying process as classical 'resurgent' malaria, it may be helpful to differentiate the two conditions, describing the later as 'delayed malaria'. In this paper, some of the evidence that delayed malaria occurs is discussed and potential measures for reducing its impact are suggested.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Malária , Animais , Criança , Pré-Escolar , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores
13.
Malar J ; 21(1): 59, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193608

RESUMO

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Estado Nutricional , Estações do Ano , Vacinação
14.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894221

RESUMO

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Formação de Anticorpos , Criança , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estações do Ano , Vacinação
15.
Lancet Infect Dis ; 22(1): 110-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529962

RESUMO

BACKGROUND: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. METHODS: This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1-17 years were enrolled in three age cohorts (12-17 years, 4-11 years, and 1-3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1-3 years after placebo injection to 21% (30 of 144) of children aged 4-11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12-17 years and 4-11 years age cohorts after the first and second dose, and pyrexia in the 1-3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12-17 years (9929 ELISA units [EU]/mL [95% CI 8172-12 064]), in 119 (99%) of 120 aged 4-11 years (10 212 EU/mL [8419-12 388]), and in 118 (98%) of 121 aged 1-3 years (22 568 EU/mL [18 426-27 642]). INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1-17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adolescente , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Humanos , Lactente , Injeções Intramusculares , Masculino , Serra Leoa , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
16.
Lancet Infect Dis ; 22(1): 97-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529963

RESUMO

BACKGROUND: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. METHODS: The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1 × 108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant's last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736-6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312-4383]) at 21 days after the second vaccination. INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adulto , Anticorpos Antivirais/imunologia , República Democrática do Congo , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Feminino , Humanos , Imunidade Humoral , Masculino , Serra Leoa , Vacinação/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
17.
Malar J ; 20(1): 361, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488784

RESUMO

Malaria control has stalled in a number of African countries and novel approaches to malaria control are needed for these areas. The encouraging results of a recent trial conducted in young children in Burkina Faso and Mali in which a combination of the RTS,S/AS01E malaria vaccine and seasonal malaria chemoprevention led to a substantial reduction in clinical cases of malaria, severe malaria, and malaria deaths compared with the administration of either intervention given alone suggests that there may be other epidemiological/clinical situations in which a combination of malaria vaccination and chemoprevention could be beneficial. Some of these potential opportunities are considered in this paper. These include combining vaccination with intermittent preventive treatment of malaria in infants, with intermittent preventive treatment of malaria in pregnancy (through vaccination of women of child-bearing age before or during pregnancy), or with post-discharge malaria chemoprevention in the management of children recently admitted to hospital with severe anaemia. Other potential uses of the combination are prevention of malaria in children at particular risk from the adverse effects of clinical malaria, such as those with sickle cell disease, and during the final stages of a malaria elimination programme when vaccination could be combined with repeated rounds of mass drug administration. The combination of a pre-erythrocytic stage malaria vaccine with an effective chemopreventive regimen could make a valuable contribution to malaria control and elimination in a variety of clinical or epidemiological situations, and the potential of this approach to malaria control needs to be explored.


Assuntos
Quimioprevenção/estatística & dados numéricos , Controle de Doenças Transmissíveis/métodos , Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Vacinação/estatística & dados numéricos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Humanos
18.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432975

RESUMO

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Antimaláricos/efeitos adversos , Burkina Faso/epidemiologia , Quimioprevenção , Terapia Combinada , Método Duplo-Cego , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Mali/epidemiologia , Estações do Ano , Convulsões Febris/etiologia
19.
Malar J ; 20(1): 326, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315475

RESUMO

BACKGROUND: Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of Anopheles gambiae mosquitoes have been investigated. METHODS: The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to An. gambiae females using a direct membrane-feeding assay. RESULTS: The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual Plasmodium falciparum (LRT X22 = 69, P < 0.0001) and the gametocyte prevalence (LRT X22 = 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X22 = 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT X22 = 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X21 = 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX22 = 330, P < 0.0001). CONCLUSION: This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of P. falciparum, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention.


Assuntos
Amodiaquina/administração & dosagem , Antimaláricos/administração & dosagem , Azitromicina/administração & dosagem , Culicidae/fisiologia , Aptidão Genética , Malária Falciparum , Plasmodium falciparum/fisiologia , Pirimetamina/administração & dosagem , Sulfadoxina/administração & dosagem , Animais , Quimioprevenção , Pré-Escolar , Combinação de Medicamentos , Humanos , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Estações do Ano
20.
Malar J ; 20(1): 274, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158054

RESUMO

BACKGROUND: Malaria and malnutrition remain major problems in Sahel countries, especially in young children. The direct effect of malnutrition on malaria remains poorly understood, and may have important implications for malaria control. In this study, nutritional status and the association between malnutrition and subsequent incidence of symptomatic malaria were examined in children in Burkina Faso and Mali who received either azithromycin or placebo, alongside seasonal malaria chemoprevention. METHODS: Mid-upper arm circumference (MUAC) was measured in all 20,185 children who attended a screening visit prior to the malaria transmission season in 2015. Prior to the 2016 malaria season, weight, height and MUAC were measured among 4149 randomly selected children. Height-for-age, weight-for-age, weight-for-height, and MUAC-for-age were calculated as indicators of nutritional status. Malaria incidence was measured during the following rainy seasons. Multivariable random effects Poisson models were created for each nutritional indicator to study the effect of malnutrition on clinical malaria incidence for each country. RESULTS: In both 2015 and 2016, nutritional status prior to the malaria season was poor. The most prevalent form of malnutrition in Burkina Faso was being underweight (30.5%; 95% CI 28.6-32.6), whereas in Mali stunting was most prevalent (27.5%; 95% CI 25.6-29.5). In 2016, clinical malaria incidence was 675 per 1000 person-years (95% CI 613-744) in Burkina Faso, and 1245 per 1000 person-years (95% CI 1152-1347) in Mali. There was some evidence that severe stunting was associated with lower incidence of malaria in Mali (RR 0.81; 95% CI 0.64-1.02; p = 0.08), but this association was not seen in Burkina Faso. Being moderately underweight tended to be associated with higher incidence of clinical malaria in Burkina Faso (RR 1.27; 95% CI 0.98-1.64; p = 0.07), while this was the case in Mali for moderate wasting (RR 1.27; 95% CI 0.98-1.64; p = 0.07). However, these associations were not observed in severely affected children, nor consistent between countries. MUAC-for-age was not associated with malaria risk. CONCLUSIONS: Both malnutrition and malaria were common in the study areas, high despite high coverage of seasonal malaria chemoprevention and long-lasting insecticidal nets. However, no strong or consistent evidence was found for an association between any of the nutritional indicators and the subsequent incidence of clinical malaria.


Assuntos
Antimaláricos/administração & dosagem , Azitromicina/administração & dosagem , Malária/epidemiologia , Desnutrição/epidemiologia , Estado Nutricional , Burkina Faso/epidemiologia , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Malária/transmissão , Masculino , Mali/epidemiologia , Desnutrição/classificação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA