Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Radiol ; 96(1149): 20220461, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393541

RESUMO

OBJECTIVE: This study aims to analyse lung tumour motion and to investigate the correlation between the internal tumour motion acquired from four-dimensional computed tomography (4DCT) and the motion of an external surrogate. METHODS: A data set of 363 4DCT images was analysed. Tumours were classified based on their anatomical lobes. The recorded gross tumour volume (GTV) information included the centroid GTV motion in the superior-inferior, anteroposterior and left-right directions, and in three-dimensions (3D). For the internal/external correlation, the RPM surrogate breathing signals of 260 patients were analysed via an in-house script. The external motion was correlated with the 3D centroid motion, and the maximum tumour motion via Spearman's correlation. The effect of tumour volume on the amount of motion was evaluated. RESULTS: The greatest 3D tumour amplitude was found for tumours located in the lower part of the lung, with a maximum of 26.7 mm. The Spearman's correlation of the internal 3D motion was weak in the upper (r = 0.21) and moderate in the middle (r = 0.51) and the lower (r = 0.52) lobes. There was no obvious difference in the correlation coefficients between the maximum tumour displacement and the centroid motion. No correlation was found between the tumour volume and the magnitude of motion. CONCLUSION: Our results suggest that tumour location can be a good predictor of its motion. However, tumour size is a poor predictor of the motion. ADVANCES IN KNOWLEDGE: This knowledge of the distribution of tumour motion throughout the thoracic regions will be valuable to research groups investigating the refinement of motion management strategies.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Movimento (Física) , Respiração , Tomografia Computadorizada Quadridimensional/métodos , Movimento
2.
Phys Chem Chem Phys ; 17(36): 23643-50, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26299204

RESUMO

The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations. De-excitation rates appear to be accelerated when individual bases are hydrogen bonded to solvent molecules or their complementary Watson-Crick pair. In this paper, the first gas-phase measurements of electronic relaxation in DNA nucleosides following UV excitation are reported. Using a pump-probe ionization scheme, the lifetimes for internal conversion to the ground state following excitation at 267 nm are found to be reduced by around a factor of two for adenosine, cytidine and thymidine compared with the isolated bases. These results are discussed in terms of a recent proposition that a charge transfer state provides an additional internal conversion pathway mediated by proton transfer through a sugar to base hydrogen bond.


Assuntos
DNA/química , Nucleosídeos/efeitos da radiação , Lasers , Nucleosídeos/química , Raios Ultravioleta , Volatilização
3.
Phys Chem Chem Phys ; 17(11): 7172-80, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25691342

RESUMO

The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential, although the base proton affinity might also play a role. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation channels of isolated nucleosides, which could in turn influence direct radiation damage in DNA.


Assuntos
DNA/química , Gases/química , Nucleosídeos/química , Prótons
4.
J Am Soc Mass Spectrom ; 24(9): 1366-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817831

RESUMO

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.


Assuntos
Aminoácidos/química , Espectrometria de Massas/métodos , Peptídeos/química , Íons/química , Lasers , Modelos Moleculares
5.
J Phys Chem A ; 116(7): 1701-9, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22268622

RESUMO

Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge-chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at ~275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.


Assuntos
Peptídeos/química , Prótons , Tirosina/química , Absorção , Meia-Vida , Ligação de Hidrogênio , Dobramento de Proteína , Vácuo
6.
Analyst ; 137(1): 64-9, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22068546

RESUMO

Mass spectra from the interaction of intense, femtosecond laser pulses with 1,3-butadiene, 1-butene, and n-butane have been obtained. The proportion of the fragment ions produced as a function of intensity, pulse length, and wavelength was investigated. Potential mass spectrometry applications, for example in the analysis of catalytic reaction products, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA