Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Gastroenterol Nutr ; 77(3): 354-357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347142

RESUMO

Non-caseating granulomas may indicate a more aggressive phenotype of Crohn disease (CD). Genetic associations of granulomatous CD (GCD) may help elucidate disease pathogenesis. Whole-exome sequencing was performed on peripheral blood-derived DNA from 17 pediatric patients with GCD and 19 with non-GCD (NGCD), and from an independent validation cohort of 44 GCD and 19 NGCD cases. PLINK (a tool set for whole-genome association and population-based linkage analyses) analysis was used to identify single nucleotide polymorphisms (SNPs) differentiating between groups, and subgroup allele frequencies were also compared to a public genomic database (gnomAD). The Combined Annotation Dependent Depletion scoring tool was used to predict deleteriousness of SNPs. Human leukocyte antigen (HLA) haplotype findings were compared to a control group (n = 8496). PLINK-based analysis between GCD and NGCD groups did not find consistently significant hits. gnomAD control comparisons, however, showed consistent subgroup associations with DGKZ , ESRRA , and GXYLT1 , genes that have been implicated in mammalian granulomatous inflammation. Our findings may guide future research and precision medicine.


Assuntos
Doença de Crohn , Criança , Humanos , Doença de Crohn/complicações , Sequenciamento do Exoma , Predisposição Genética para Doença , Granuloma/genética , Granuloma/patologia , Fenótipo , Receptor ERRalfa Relacionado ao Estrogênio
2.
Neuroendocrinology ; 113(10): 1008-1023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271138

RESUMO

INTRODUCTION: Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia (GA) and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of GA. In order to identify potential phosphorylation events in the brain-mediating GA effects, we have explored the phosphoproteome responses in the rat SON and compared these to cingulate cortex (CC) which displays no FOS activation in response to general anaesthetics. METHODS: Adult Sprague-Dawley rats were treated with isoflurane for 15 min. Proteins from the CC and SON were extracted and processed for nano-LC mass spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS. RESULTS: We found many changes in the phosphoproteomes of both the CC and SON in response to 15 min of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to GA between the CC and SON. CONCLUSION: In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating GA.


Assuntos
Anestésicos Gerais , Isoflurano , Ratos , Animais , Núcleo Supraóptico/metabolismo , Isoflurano/farmacologia , Isoflurano/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-fos/metabolismo , Espectrometria de Massas em Tandem , Hipotálamo/metabolismo , Anestésicos Gerais/metabolismo , Anestésicos Gerais/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo
3.
Br J Cancer ; 128(4): 618-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434155

RESUMO

BACKGROUND: Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS: SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS: Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS: The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias Pulmonares , Humanos , Feminino , Índice de Massa Corporal , Fatores de Risco , Obesidade/complicações , Neoplasias do Endométrio/genética , Neoplasias Pulmonares/complicações , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
4.
Commun Biol ; 4(1): 779, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163009

RESUMO

The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.


Assuntos
Água Corporal/metabolismo , Camelus/fisiologia , Colesterol/fisiologia , Rim/metabolismo , Animais , Aquaporina 2/fisiologia , Desidratação/metabolismo , Clima Desértico , Metabolismo dos Lipídeos , Masculino , Proteoma , ATPase Trocadora de Sódio-Potássio/fisiologia , Transcriptoma
5.
Sci Rep ; 11(1): 393, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432092

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Estruturais Virais/metabolismo , Zika virus/metabolismo , Células A549 , Adulto , Idoso , Animais , Células Cultivadas , Chlorocebus aethiops , Culicidae , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Células Vero , Internalização do Vírus , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
6.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29279858

RESUMO

The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a RNA/metabolismo , Núcleo Supraóptico/metabolismo , Transcriptoma , Aprendizado de Máquina não Supervisionado , Animais , Mineração de Dados , Feminino , Regulação da Expressão Gênica , Masculino , Análise em Microsséries , Células PC12 , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real
7.
Gen Comp Endocrinol ; 249: 24-31, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242308

RESUMO

Parathyroid hormone-related protein (PTHrP) is a hypercalcemic factor in fish, but the source of circulating PTHrP remains unclear. In this study investigation of the caudal neurosecretory system (CNSS), considered one of major sources of PTHrP in fish, provided valuable insights into this regulatory system. We report pthrpa and pthrpb gene cloning, characterization, expression, and responses to low salinity and hypocalcemia challenge in flounder. The pthrpa and pthrpb precursors, isolated from a European flounder CNSS library, consist of 166 and 192 amino acid residues, respectively, with an overall homology of approximately 59.2%. Both precursors contain a signal peptide and a mature peptide with cleavage and amidation sites. The flounder PTHrPA and PTHrPB peptides share only 41% sequence identity with human PTHrPA. Quantitative PCR analysis demonstrated that the bone and bladder, are respectively major sites of pthrpa and pthrpb expression in flounder. Urophysectomy confirmed the CNSS as a likely contributor to circulating PTHrP peptides. There were no significant differences in CNSS pthrpa and pthrpb mRNA expression or plasma PTHrP levels between seawater (SW) and freshwater (FW)-adapted fish, though plasma total calcium concentrations were higher in FW animals. The intraperitonial administration of EGTA rapidly induced hypocalcemia and concomitant elevation in plasma PTHrP accompanied by increases in both pthrpa and pthrpb expression in the CNSS. Together, these findings support an evolutionary conserved role for PTHrP in the endocrine regulation of calcium.


Assuntos
Linguado/genética , Sistemas Neurossecretores/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Aclimatação , Sequência de Aminoácidos , Animais , Cálcio/sangue , Clonagem Molecular , DNA Complementar/genética , Ácido Egtázico/administração & dosagem , Linguado/sangue , Linguado/metabolismo , Água Doce , Perfilação da Expressão Gênica , Hipocalcemia/sangue , Injeções Intraperitoneais , Proteína Relacionada ao Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Água do Mar , Homologia de Sequência de Aminoácidos
8.
Mol Brain ; 9: 1, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739966

RESUMO

BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain. RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress. CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dexametasona/farmacologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Hipotálamo/efeitos dos fármacos , Lentivirus/metabolismo , Masculino , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosforilação/efeitos dos fármacos , Neuro-Hipófise/efeitos dos fármacos , Neuro-Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Restrição Física , Estresse Fisiológico/efeitos dos fármacos , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas ras/genética
9.
Mol Brain ; 8(1): 68, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503226

RESUMO

BACKGROUND: Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression. RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress. CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.


Assuntos
Arginina Vasopressina/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Hipotálamo/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Arginina Vasopressina/metabolismo , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dexametasona/farmacologia , Hipotálamo/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Pressão Osmótica/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Estresse Fisiológico/efeitos dos fármacos , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA