Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 176: 105941, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473592

RESUMO

The protein DJ-1 is mutated in rare familial forms of recessive Parkinson's disease and in parkinsonism accompanied by amyotrophic lateral sclerosis symptoms and dementia. DJ-1 is considered a multitasking protein able to confer protection under various conditions of stress. However, the precise cellular function still remains elusive. In the present work, we evaluated fruit flies lacking the expression of the DJ-1 homolog dj-1ß as compared to control aged-matched individuals. Behavioral evaluations included lifespan, locomotion in an open field arena, sensitivity to oxidative insults, and resistance to starvation. Molecular analyses were carried out by analyzing the mitochondrial morphology and functionality, and the autophagic response. We demonstrated that dj-1ß null mutant flies are hypoactive and display higher sensitivity to oxidative insults and food deprivation. Analysis of mitochondrial homeostasis revealed that loss of dj-1ß leads to larger and more circular mitochondria, characterized by impaired complex-I-linked respiration while preserving ATP production capacity. Additionally, dj-1ß null mutant flies present an impaired autophagic response, which is suppressed by treatment with the antioxidant molecule N-Acetyl-L-Cysteine. Overall, our data point to a mechanism whereby DJ-1 plays a critical role in the maintenance of energy homeostasis, by sustaining mitochondrial homeostasis and affecting the autophagic flux through the maintenance of the cellular redox state. In light of the involvement of DJ-1 in neurodegenerative diseases and considering that neurons are highly energy-demanding cells, particularly sensitive to redox stress, our study sheds light on a key role of DJ-1 in the maintenance of cellular homeostasis.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Mitocôndrias/metabolismo , Antioxidantes , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Drosophila/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Estresse Oxidativo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096339

RESUMO

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Assuntos
Proteínas 14-3-3 , Paraplegia Espástica Hereditária , Humanos , Proteínas 14-3-3/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Paraplegia Espástica Hereditária/genética , Mutação , Corpo Caloso/patologia , Proteínas/genética
3.
Glia ; 69(3): 681-696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045109

RESUMO

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Astrócitos , Clusterina/genética , Humanos , Corpos de Lewy , Camundongos , alfa-Sinucleína/genética
4.
J Cell Mol Med ; 23(12): 8505-8510, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560168

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). The LRRK2 physiological and pathological function is still debated. However, different experimental evidence based on LRRK2 cellular localization and LRRK2 protein interactors suggests that LRRK2 may be part and regulate a protein network modulating vesicle dynamics/trafficking. Interestingly, the synaptic vesicle protein SV2A is part of this protein complex. Importantly, SV2A is the binding site of the levetiracetam (LEV), a compound largely used in human therapy for epilepsy treatment. The binding of LEV to SV2A reduces the neuronal firing by the modulation of vesicle trafficking although by an unclear molecular mechanism. In this short communication, we have analysed the interaction between the LRRK2 and SV2A pathways by LEV treatment. Interestingly, LEV significantly counteracts the effect of LRRK2 G2019S pathological mutant expression in three different cellular experimental models. Our data strongly suggest that LEV treatment may have a neuroprotective effect on LRRK2 pathological mutant toxicity and that LEV repositioning could be a viable compound for PD treatment.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Levetiracetam/farmacologia , Mutação , Neurônios/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Animais , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células PC12 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais/efeitos dos fármacos
5.
J Biol Chem ; 294(13): 4738-4758, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30709905

RESUMO

Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are a common cause of hereditary Parkinson's disease. LRRK2 regulates various intracellular vesicular trafficking pathways, including endolysosomal degradative events such as epidermal growth factor receptor (EGFR) degradation. Recent studies have revealed that a subset of RAB proteins involved in secretory and endocytic recycling are LRRK2 kinase substrates in vivo However, the effects of LRRK2-mediated phosphorylation of these substrates on membrane trafficking remain unknown. Here, using an array of immunofluorescence and pulldown assays, we report that expression of active or phosphodeficient RAB8A variants rescues the G2019S LRRK2-mediated effects on endolysosomal membrane trafficking. Similarly, up-regulation of the RAB11-Rabin8-RAB8A cascade, which activates RAB8A, also reverted these trafficking deficits. Loss of RAB8A mimicked the effects of G2019S LRRK2 on endolysosomal trafficking and decreased RAB7A activity. Expression of pathogenic G2019S LRRK2 or loss of RAB8A interfered with EGFR degradation by causing its accumulation in a RAB4-positive endocytic compartment, which was accompanied by a deficit in EGFR recycling and was rescued upon expression of active RAB7A. Dominant-negative RAB7A expression resulted in similar deficits in EGF degradation, accumulation in a RAB4 compartment, and deficits in EGFR recycling, which were all rescued upon expression of active RAB8A. Taken together, these findings suggest that, by impairing RAB8A function, pathogenic G2019S LRRK2 deregulates endolysosomal transport and endocytic recycling events.


Assuntos
Endossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação de Sentido Incorreto , Proteínas rab de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Endossomos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinases do Centro Germinativo , Células HEK293 , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Proteólise , Proteínas rab de Ligação ao GTP/genética
6.
J Neuroinflammation ; 15(1): 297, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368241

RESUMO

BACKGROUND: Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS: To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS: We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS: Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Análise de Variância , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação/genética , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , RNA Mensageiro , Transfecção
7.
Mol Neurodegener ; 13(1): 3, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29357897

RESUMO

BACKGROUND: Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. METHODS: Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. RESULTS: Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. CONCLUSIONS: Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.


Assuntos
Centrossomo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/patologia , Fosforilação
8.
PLoS One ; 12(6): e0179082, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582422

RESUMO

Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Complexo de Golgi/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transporte Proteico , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais
9.
Biochem Soc Trans ; 45(1): 261-267, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202680

RESUMO

Evidence indicates that leucine-rich repeat kinase 2 (LRRK2) controls multiple processes in neurons and glia cells. Deregulated LRRK2 activity due to gene mutation represents the most common cause of autosomal dominant Parkinson's disease (PD). Protein kinase A (PKA)-mediated signaling is a key regulator of brain function. PKA-dependent pathways play an important role in brain homeostasis, neuronal development, synaptic plasticity, control of microglia activation and inflammation. On the other hand, a decline of PKA signaling was shown to contribute to the progression of several neurodegenerative diseases, including PD. In this review, we will discuss the accumulating evidence linking PKA and LRRK2 in neuron and microglia functions, and offer an overview of the enigmatic cross-talk between these two kinases with molecular and cellular implications.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/enzimologia , Transdução de Sinais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Homeostase , Humanos , Microglia/enzimologia , Modelos Neurológicos , Neurônios/enzimologia
10.
Mol Neurodegener ; 11: 1, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758690

RESUMO

BACKGROUND: Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. RESULTS: Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. CONCLUSIONS: Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.


Assuntos
Adenosina Trifosfatases/metabolismo , Mutação/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas SNARE/metabolismo , Animais , Proteínas de Transporte/metabolismo , Etilmaleimida/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
PLoS One ; 10(8): e0136769, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317353

RESUMO

Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.


Assuntos
Catecolaminas/biossíntese , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Estaurosporina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Tretinoína/farmacologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia
12.
Chem Biol ; 21(7): 809-18, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24981771

RESUMO

Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson's disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.


Assuntos
Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Sequência Conservada , Evolução Molecular , Humanos , Terapia de Alvo Molecular
13.
J Neurochem ; 131(2): 239-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24947832

RESUMO

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.


Assuntos
Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina
14.
Hum Mol Genet ; 23(21): 5615-29, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24895406

RESUMO

Familial and idiopathic Parkinson's disease (PD) is associated with the abnormal neuronal accumulation of α-synuclein (aS) leading to ß-sheet-rich aggregates called Lewy Bodies (LBs). Moreover, single point mutation in aS gene and gene multiplication lead to autosomal dominant forms of PD. A connection between PD and the 14-3-3 chaperone-like proteins was recently proposed, based on the fact that some of the 14-3-3 isoforms can interact with genetic PD-associated proteins such as parkin, LRRK2 and aS and were found as components of LBs in human PD. In particular, a direct interaction between 14-3-3η and aS was reported when probed by co-immunoprecipitation from cell models, from parkinsonian brains and by surface plasmon resonance in vitro. However, the mechanisms through which 14-3-3η and aS interact in PD brains remain unclear. Herein, we show that while 14-3-3η is unable to bind monomeric aS, it interacts with aS oligomers which occur during the early stages of aS aggregation. This interaction diverts the aggregation process even when 14-3-3η is present in sub-stoichiometric amounts relative to aS. When aS level is overwhelmingly higher than that of 14-3-3η, the fibrillation process becomes a sequestration mechanism for 14-3-3η, undermining all processes governed by this protein. Using a panel of complementary techniques, we single out the stage of aggregation at which the aS/14-3-3η interaction occurs, characterize the products of the resulting processes, and show how the processes elucidated in vitro are relevant in cell models. Our findings constitute a first step in elucidating the molecular mechanism of aS/14-3-3η interaction and in understanding the critical aggregation step at which 14-3-3η has the potential to rescue aS-induced cellular toxicity.


Assuntos
Proteínas 14-3-3/metabolismo , Amiloidose/metabolismo , Agregação Patológica de Proteínas , Transdução de Sinais , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Humanos , Cinética , Ligação Proteica , Isoformas de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/genética
15.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24510904

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença/genética , Complexos Multiproteicos/metabolismo , Doença de Parkinson/enzimologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Western Blotting , Encéfalo/metabolismo , Fracionamento Celular , Primers do DNA/genética , Estudo de Associação Genômica Ampla/métodos , Complexo de Golgi/ultraestrutura , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Microscopia Confocal , Complexos Multiproteicos/genética , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
16.
FEBS J ; 281(1): 261-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24286120

RESUMO

The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leucine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocytoma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular complexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the regulation of its cellular function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonina 60/metabolismo , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Oncogênicas/metabolismo , Sobrevivência Celular , Citometria de Fluxo , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
PLoS One ; 7(8): e43472, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952686

RESUMO

Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinson's disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/química , Trifosfato de Adenosina/química , Cromatografia/métodos , Dicroísmo Circular , Dimerização , Células HEK293 , Humanos , Imuno-Histoquímica , Lentivirus/genética , Proteínas de Repetições Ricas em Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Mutação , Fosforilação , Mutação Puntual , Ligação Proteica , Proteínas Serina-Treonina Quinases/química
18.
J Neurochem ; 116(2): 304-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21073465

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease. The LRRK2 gene encodes a Roco protein featuring a Ras of complex proteins (ROC) GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay, we demonstrated that the intra-molecular ROC : COR interaction is favoured over ROC : ROC dimerization. Interestingly, the intra-molecular ROC : COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC : COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC : COR interface, strengthens the intra-molecular ROC : COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.


Assuntos
Mutação , Proteínas Serina-Treonina Quinases/genética , Domínio Catalítico/genética , Cisteína/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Ligação Proteica/genética , Multimerização Proteica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/genética
19.
BMC Neurosci ; 11: 41, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20334701

RESUMO

BACKGROUND: Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. alpha-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for alpha-synuclein have been found in familial forms of PD. RESULTS: We used dopaminergic human neuroblastoma BE(2)-M17 cell lines stably transfected with WT or A30P mutant alpha-synuclein to characterize the effect of alpha-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant alpha-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. CONCLUSIONS: Our results suggest that an interplay between dopamine and alpha-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of alpha-synuclein oligomers and impairment of the lysosomal degradation.


Assuntos
Dopamina/metabolismo , Neuroblastoma/metabolismo , alfa-Sinucleína/metabolismo , Apoptose/fisiologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Di-Hidroxifenilalanina/metabolismo , Fluorescência , Humanos , L-Lactato Desidrogenase/metabolismo , Mutação de Sentido Incorreto , Necrose/metabolismo , Neurônios/metabolismo , Doença de Parkinson , Transfecção , alfa-Sinucleína/genética
20.
J Biol Chem ; 284(10): 6476-85, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19124468

RESUMO

The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.


Assuntos
Cisteína/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Oncogênicas/metabolismo , Ácidos Sulfínicos/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Cisteína/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Mitocondriais/genética , Mutação , Proteínas Oncogênicas/genética , Oxirredução , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA