Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(11): 2757-2767, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596828

RESUMO

Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy-Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy-Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy-Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.


Assuntos
Vermis Cerebelar , Síndrome de Dandy-Walker , Microcefalia , Animais , Camundongos , Humanos , Síndrome de Dandy-Walker/diagnóstico , Síndrome de Dandy-Walker/genética , Cerebelo/anormalidades , Microcefalia/complicações , Fenótipo , Calpaína/genética
2.
Genet Med ; 25(8): 100885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165955

RESUMO

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética
3.
Ann Neurol ; 84(5): 638-647, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178464

RESUMO

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Assuntos
Tronco Encefálico/anormalidades , Caderinas/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Protocaderinas
4.
Am J Hum Genet ; 102(1): 44-57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276004

RESUMO

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epilepsia/genética , Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Sequência de Aminoácidos , Animais , Comportamento Animal , Criança , Pré-Escolar , Dendritos/metabolismo , Feminino , Proteínas de Ligação ao GTP/química , Dosagem de Genes , Células HEK293 , Humanos , Masculino , Fenótipo , Sinapses/patologia , Proteínas Supressoras de Tumor/química
5.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092684

RESUMO

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Assuntos
Doenças Cerebelares/genética , Exonucleases/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Alelos , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças Neurodegenerativas/genética , RNA Mensageiro/genética , Spliceossomos/genética , Peixe-Zebra
6.
Am J Med Genet A ; 167A(11): 2503-2507, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26109232

RESUMO

We report on two families, each with documented consanguinity and two affected with overlapping features of Dandy-Walker malformation, genitourinary abnormalities, intellectual disability, and hearing deficit. This phenotype shares similar findings with many well-known syndromes. However, the clinical findings of this syndrome categorize this as a new syndrome as compared with the phenotype of already established syndromes. Due to parental consanguinity, occurrence in siblings of both genders and the absence of manifestations in obligate carrier parents, an autosomal recessive pattern of inheritance is more likely. The authors believe that these families suggest a novel autosomal recessive cerebello-genital syndrome. Array CGH analyses of an affected did not show pathological deletions or duplications.


Assuntos
Síndrome de Dandy-Walker/complicações , Deficiência Intelectual/complicações , Anormalidades Urogenitais/complicações , Pré-Escolar , Família , Feminino , Humanos , Lactente , Masculino , Linhagem
7.
Clin Cancer Res ; 9(7): 2472-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12855620

RESUMO

PURPOSE: Our goal was to find the maximum tolerated dose of gemcitabine administered concurrently with thoracic radiotherapy in locally advanced non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with stage III NSCLC and a radiation planning volume less than 2000 cm(3) were included. Treatment consisted of 6 weeks of thoracic radiation, 2 Gy daily for 5 days a week for a total dose of 60 Gy. Planning with multiple field arrangements and three-dimensional conformal technique was used. Patients were treated with gemcitabine, starting with a dose of 300 mg/m(2) in the 1st week of radiation. In subsequent cohorts, the weekly dosing frequency of gemcitabine was increased until weekly administration was reached. Thereafter, the doses of weekly gemcitabine were increased. Toxicity was measured using Common Toxicity of the National Cancer Institute (CTC), acute Radiation Therapy Oncology Group (RTOG), and late RTOG/European Organization for Research and Treatment of Cancer (EORTC) rating scales. RESULTS: Twenty-seven patients were included, of whom 14 had stage IIIa and 13 had stage IIIb. Dose-limiting toxicity was grade 3 esophagitis and grade 3 radiation pneumonitis in the patient cohort receiving gemcitabine 450 mg/m(2) once weekly. The mean actual treated radiation volume was 760 cm(3) (range, 289-1718 cm(3)). CONCLUSIONS: The maximum tolerated dose and frequency of gemcitabine in locally advanced NSCLC is 300 mg/m(2) once weekly during 6 weeks of thoracic radiotherapy, as long as the treatment volume does not exceed 2000 cm(3).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Adulto , Idoso , Estudos de Coortes , Terapia Combinada , Relação Dose-Resposta a Droga , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA