Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(22): 5642-5649, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791570

RESUMO

Bioluminescence (BL), i.e., the emission of light in living organisms, has become an indispensable tool for a plethora of applications including bioassays, biosensors, and in vivo imaging. Current efforts are focused on the obtainment of new luciferases having optimized properties, such as improved thermostability at 37 °C, pH-insensitive emission, high quantum yield, extended kinetics and red-shifted emission. To address these issues we have obtained two new synthetic luciferases, an orange and a red-emitting luciferase, which were designed to achieve high sensitivity (BoLuc) and multiplexing capability (BrLuc) for in vitro and in vivo biosensing using as a starting template a recently developed thermostable synthetic luciferase (BgLuc). Both luciferases were characterized in terms of emission behaviour and thermal and pH stability showing promising features as reporter proteins and BL probes. As proof-of-principle application, an inflammation assay based on Human Embryonic Kidney (HEK293T) 3D cell cultures was developed using either the orange or the red-emitting mutant. The assay provided good analytical performance, with limits of detection for Tumor Necrosis Factor (TNFα) of 0.06 and 0.12 ng mL-1 for BoLuc and BrLuc, respectively. Moreover, since these luciferases require the same substrate, D-luciferin, they can be easily implemented in dual-color assays with a significant reduction of total cost per assay.


Assuntos
Luciferases de Vaga-Lume , Medições Luminescentes , Humanos , Células HEK293 , Luciferases/genética , Luciferases/química , Medições Luminescentes/métodos , Luciferases de Vaga-Lume/química
2.
Anal Chem ; 95(4): 2540-2547, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36473148

RESUMO

The identification of new strategies to improve the stability of proteins is of utmost importance for a number of applications, from biosensing to biocatalysis. Metal-organic frameworks (MOFs) have been shown as a versatile host platform for the immobilization of proteins, with the potential to protect proteins in harsh conditions. In this work, a new thermostable luciferase mutant has been selected as a bioluminescent protein model to investigate the suitability of MOFs to improve its stability and prompt its applications in real-world applications, for example, ATP detection in portable systems. The luciferase has been immobilized onto zeolitic imidazolate framework-8 (ZIF-8) to obtain a bioluminescent biocomposite with enhanced performance. The biocomposite ZIF-8@luc has been characterized in harsh conditions (e.g., high temperature, non-native pH, etc.). Bioluminescence properties confirmed that MOF enhanced the luciferase stability at acidic pH, in the presence of organic solvents, and at -20 °C. To assess the feasibility of this approach, the recyclability, storage stability, precision, and Michaelis-Menten constants (Km) for ATP and d-luciferin have been also evaluated. As a proof of principle, the suitability for ATP detection was investigated and the biocomposite outperformed the free enzyme in the same experimental conditions, achieving a limit of detection for ATP down to 0.2 fmol.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Zeolitas/química , Estruturas Metalorgânicas/química , Enzimas Imobilizadas/química , Luciferases/genética , Trifosfato de Adenosina
3.
Biosensors (Basel) ; 12(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140127

RESUMO

The availability of new bioluminescent proteins with tuned properties, both in terms of emission wavelength, kinetics and protein stability, is highly valuable in the bioanalytical field, with the potential to improve the sensitivity and analytical performance of the currently used methods for ATP detection, whole-cell biosensors, and viability assays among others. We present a new luciferase mutant, called BgLuc, suitable for developing whole-cell biosensors and in vitro biosensors characterized by a bioluminescence maximum of 548 nm, narrow emission bandwidth, favorable kinetic properties, and excellent pH- and thermo-stabilities at 37 and 45 °C and pH from 5.0 to 8.0. We assessed the suitability of this new luciferase for whole-cell biosensing with a cell-based bioreporter assay for Nuclear Factor-kappa B (NF-kB) signal transduction pathway using 2D and 3D human embryonic kidney (HEK293T) cells, and for ATP detection with the purified enzyme. In both cases the luciferase showed suitable for sensitive detection of the target analytes, with better or similar performance than the commercial counterparts.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes , Trifosfato de Adenosina , Técnicas Biossensoriais/métodos , Células HEK293 , Humanos , Luciferases , Medições Luminescentes/métodos , Proteínas Luminescentes , NF-kappa B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA