Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Radiother Oncol ; 193: 110113, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301958

RESUMO

BACKGROUND AND PURPOSE: Radiation induced cardiotoxicity (RICT) is as an important sequela of radiotherapy to the thorax for patients. In this study, we aim to investigate the dose and fractionation response of RICT. We propose global longitudinal strain (GLS) as an early indicator of RICT and investigate myocardial deformation following irradiation. METHODS: RICT was investigated in female C57BL/6J mice in which the base of the heart was irradiated under image-guidance using a small animal radiation research platform (SARRP). Mice were randomly assigned to a treatment group: single-fraction dose of 16 Gy or 20 Gy, 3 consecutive fractions of 8.66 Gy, or sham irradiation; biological effective doses (BED) used were 101.3 Gy, 153.3 Gy and 101.3 Gy respectively. Longitudinal transthoracic echocardiography (TTE) was performed from baseline up to 50 weeks post-irradiation to detect structural and functional effects. RESULTS: Irradiation of the heart base leads to BED-dependent changes in systolic and diastolic function 50 weeks post-irradiation. GLS showed significant decreases in a BED-dependent manner for all irradiated animals, as early as 10 weeks after irradiation. Early changes in GLS indicate late changes in cardiac function. BED-independent increases were observed in the left ventricle (LV) mass and volume and myocardial fibrosis. CONCLUSIONS: Functional features of RICT displayed a BED dependence in this study. GLS showed an early change at 10 weeks post-irradiation. Cardiac remodelling was observed as increases in mass and volume of the LV, further supporting our hypothesis that dose to the base of the heart drives the global heart toxicity.


Assuntos
Coração , Miocárdio , Humanos , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Coração/efeitos da radiação , Ecocardiografia , Cardiotoxicidade/etiologia
2.
Radiother Oncol ; 190: 110004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972738

RESUMO

PURPOSE: Despite technological advances in radiotherapy (RT), cardiotoxicity remains a common complication in patients with lung, oesophageal and breast cancers. Statin therapy has been shown to have pleiotropic properties beyond its lipid-lowering effects. Previous murine models have shown statin therapy can reduce short-term functional effects of whole-heart irradiation. In this study, we assessed the efficacy of atorvastatin in protecting against the late effects of radiation exposure on systolic function, cardiac conduction, and atrial natriuretic peptide (ANP) following a clinically relevant partial-heart radiation exposure. MATERIALS AND METHODS: Female, 12-week old, C57BL/6j mice received an image-guided 16 Gy X-ray field to the base of the heart using a small animal radiotherapy research platform (SARRP), with or without atorvastatin from 1 week prior to irradiation until the end of the experiment. The animals were followed for 50 weeks with longitudinal transthoracic echocardiography (TTE) and electrocardiography (ECG) every 10 weeks, and plasma ANP every 20 weeks. RESULTS: At 30-50 weeks, mild left ventricular systolic function impairment observed in the RT control group was less apparent in animals receiving atorvastatin. ECG analysis demonstrated prolongation of components of cardiac conduction related to the heart base at 10 and 30 weeks in the RT control group but not in animals treated with atorvastatin. In contrast to systolic function, conduction disturbances resolved at later time-points with radiation alone. ANP reductions were lower in irradiated animals receiving atorvastatin at 30 and 50 weeks. CONCLUSIONS: Atorvastatin prevents left ventricular systolic dysfunction, and the perturbation of cardiac conduction following partial heart irradiation. If confirmed in clinical studies, these data would support the use of statin therapy for cardioprotection during thoracic radiotherapy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Disfunção Ventricular Esquerda , Humanos , Feminino , Camundongos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Camundongos Endogâmicos C57BL , Coração/efeitos da radiação , Modelos Animais de Doenças
4.
Int J Radiat Oncol Biol Phys ; 115(2): 453-463, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985456

RESUMO

PURPOSE: Radiation cardiotoxicity (RC) is a clinically significant adverse effect of treatment for patients with thoracic malignancies. Clinical studies in lung cancer have indicated that heart substructures are not uniformly radiosensitive, and that dose to the heart base drives RC. In this study, we aimed to characterize late changes in gene expression using spatial transcriptomics in a mouse model of base regional radiosensitivity. METHODS AND MATERIALS: An aged female C57BL/6 mouse was irradiated with 16 Gy delivered to the cranial third of the heart using a 6 × 9 mm parallel opposed beam geometry on a small animal radiation research platform, and a second mouse was sham-irradiated. After echocardiography, whole hearts were collected at 30 weeks for spatial transcriptomic analysis to map gene expression changes occurring in different regions of the partially irradiated heart. Cardiac regions were manually annotated on the capture slides and the gene expression profiles compared across different regions. RESULTS: Ejection fraction was reduced at 30 weeks after a 16 Gy irradiation to the heart base, compared with the sham-irradiated controls. There were markedly more significant gene expression changes within the irradiated regions compared with nonirradiated regions. Variation was observed in the transcriptomic effects of radiation on different cardiac base structures (eg, between the right atrium [n = 86 dysregulated genes], left atrium [n = 96 dysregulated genes], and the vasculature [n = 129 dysregulated genes]). Disrupted biological processes spanned extracellular matrix as well as circulatory, neuronal, and contractility activities. CONCLUSIONS: This is the first study to report spatially resolved gene expression changes in irradiated tissues. Examination of the regional radiation response in the heart can help to further our understanding of the cardiac base's radiosensitivity and support the development of actionable targets for pharmacologic intervention and biologically relevant dose constraints.


Assuntos
Pulmão , Transcriptoma , Animais , Feminino , Camundongos , Relação Dose-Resposta à Radiação , Coração , Pulmão/efeitos da radiação , Camundongos Endogâmicos C57BL
5.
Front Endocrinol (Lausanne) ; 12: 650328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149611

RESUMO

Diabetes in pregnancy is associated with adverse pregnancy outcomes including preterm birth. Although the mechanisms leading to these pregnancy complications are still poorly understood, aberrant angiogenesis and endothelial dysfunction play a key role. FKBPL and SIRT-1 are critical regulators of angiogenesis, however, their roles in pregnancies affected by diabetes have not been examined before in detail. Hence, this study aimed to investigate the role of FKBPL and SIRT-1 in pre-gestational (type 1 diabetes mellitus, T1D) and gestational diabetes mellitus (GDM). Placental protein expression of important angiogenesis proteins, FKBPL, SIRT-1, PlGF and VEGF-R1, was determined from pregnant women with GDM or T1D, and in the first trimester trophoblast cells exposed to high glucose (25 mM) and varying oxygen concentrations [21%, 6.5%, 2.5% (ACH-3Ps)]. Endothelial cell function was assessed in high glucose conditions (30 mM) and following FKBPL overexpression. Placental FKBPL protein expression was downregulated in T1D (FKBPL; p<0.05) whereas PlGF/VEGF-R1 were upregulated (p<0.05); correlations adjusted for gestational age were also significant. In the presence of GDM, only SIRT-1 was significantly downregulated (p<0.05) even when adjusted for gestational age (r=-0.92, p=0.001). Both FKBPL and SIRT-1 protein expression was reduced in ACH-3P cells in high glucose conditions associated with 6.5%/2.5% oxygen concentrations compared to experimental normoxia (21%; p<0.05). FKBPL overexpression in endothelial cells (HUVECs) exacerbated reduction in tubule formation compared to empty vector control, in high glucose conditions (junctions; p<0.01, branches; p<0.05). In conclusion, FKBPL and/or SIRT-1 downregulation in response to diabetic pregnancies may have a key role in the development of vascular dysfunction and associated complications affected by impaired placental angiogenesis.


Assuntos
Diabetes Gestacional/sangue , Regulação para Baixo , Endotélio Vascular/metabolismo , Complicações na Gravidez/metabolismo , Sirtuína 1/biossíntese , Proteínas de Ligação a Tacrolimo/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais/citologia , Feminino , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Oxigênio/metabolismo , Placenta/irrigação sanguínea , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Trofoblastos/metabolismo , Regulação para Cima
6.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34032637

RESUMO

Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cardiomegalia , Miocárdio , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo
7.
J Clin Endocrinol Metab ; 106(1): 26-41, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617576

RESUMO

CONTEXT: Preeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies. OBJECTIVE: To investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44. DESIGN AND INTERVENTION: FKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling. SETTINGS AND PARTICIPANTS: Human samples prediagnosis (15 and 20 weeks of gestation; n ≥ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid. MAIN OUTCOME MEASURES: Preeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed. RESULTS: The CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis. CONCLUSIONS: The FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes.


Assuntos
Receptores de Hialuronatos/fisiologia , Transplante de Células-Tronco Mesenquimais , Pré-Eclâmpsia , Proteínas de Ligação a Tacrolimo/fisiologia , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/terapia , Gravidez , Prognóstico , Medição de Risco , Transdução de Sinais/genética , Proteínas de Ligação a Tacrolimo/análise , Proteínas de Ligação a Tacrolimo/genética , Adulto Jovem
8.
Diabetes ; 69(10): 2170-2185, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32796081

RESUMO

Diabetic macular edema (DME) remains a leading cause of vision loss worldwide. DME is commonly treated with intravitreal injections of vascular endothelial growth factor (VEGF)-neutralizing antibodies. VEGF inhibitors (anti-VEGFs) are effective, but not all patients fully respond to them. Given the potential side effects, inconvenience, and high cost of anti-VEGFs, identifying who may not respond appropriately to them and why is essential. Herein we determine first the response to anti-VEGFs, using spectral-domain optical coherence tomography scans obtained from a cohort of patients with DME throughout the 1st year of treatment. We found that fluid fully cleared at some time during the 1st year in 28% of eyes ("full responders"); fluid cleared only partly in 66% ("partial responders"); and fluid remained unchanged in 6% ("nonresponders"). To understand this differential response, we generated induced pluripotent stem cells (iPSCs) from full responders and nonresponders, from subjects with diabetes but no DME, and from age-matched volunteers without diabetes. We differentiated these iPSCs into endothelial cells (iPSC-ECs). Monolayers of iPSC-ECs derived from patients with diabetes showed a marked and prolonged increase in permeability upon exposure to VEGF; the response was significantly exaggerated in iPSC-ECs from nonresponders. Moreover, phosphorylation of key cellular proteins in response to VEGF, including VEGFR2, and gene expression profiles, such as that of neuronal pentraxin 2, differed between full responders and nonresponders. In this study, iPSCs were used in order to predict patients' responses to anti-VEGFs and to identify key mechanisms that underpin the differential outcomes observed in the clinic. This approach identified NPTX2 as playing a significant role in patient-linked responses and as having potential as a new therapeutic target for DME.


Assuntos
Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Edema Macular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosforilação/fisiologia , Análise de Sequência de RNA , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Radiother Oncol ; 152: 216-221, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663535

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced cardiac toxicity (RICT) remains one of the most critical dose limiting constraints in radiotherapy. Recent studies have shown higher doses to the base of the heart are associated with worse overall survival in lung cancer patients receiving radiotherapy. This work aimed to investigate the impact of sub-volume heart irradiation in a mouse model using small animal image-guided radiotherapy. MATERIALS AND METHODS: C57BL/6 mice were irradiated with a single fraction of 16 Gy to the base, middle or apex of the heart using a small animal radiotherapy research platform. Cone beam CT and echocardiography were performed at baseline and at 10 week intervals until 50 weeks post-treatment. Structural and functional parameters were correlated with mean heart dose (MHD) and volume of heart receiving 5 Gy (V5). RESULTS: All irradiated mice showed a time dependent increase in left ventricle wall thickness in diastole of ~0.2 mm detected at 10 weeks post-treatment, with the most significant and persistent changes occurring in the heart base-irradiated animals. Similarly, statistically different functional effects (p < 0.01) were observed in base-irradiated animals which showed the most significant decreases compared to controls. The observed functional changes did not correlate with MHD and V5 (R2 < 0.1), indicating that whole heart dosimetry parameters do not predict physiological changes resulting from cardiac sub-volume irradiation. CONCLUSIONS: This is the first report demonstrating the structural and functional consequences of sub-volume targeting in the mouse heart and reverse translates clinical observations indicating the heart base as a critical radiosensitive region.


Assuntos
Lesões por Radiação , Radiometria , Animais , Coração/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575797

RESUMO

Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα-/- mice and prevented in Nox2-/- mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2-/- hearts, whilst oxidative stress pathways remained dysregulated in PPARα-/- hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.


Assuntos
Hipertrofia Ventricular Esquerda/genética , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , PPAR alfa/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Fenilefrina/farmacologia , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA